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Abstract: Within the theory of spline functions, there was always great interest in
the study of B-splines, i.e. splines with a finite support. In addition to the classical
polynomial case, there exist also various approaches to the definition of B-splines from
other function classes, such as trigonometric or hyperbolic ones (cf. section 0). In the
present paper we define B-splines from a rather general function space, which covers
almost all existing approaches as special cases. The only condition that the spaces
under consideration must satisfy is that of being translation invariant, a fundamental
property which we are going to define in section 2. .

Our definition of generalized B-splines is based on generalized divided differences,
which go back to Popoviciu [14] and were further investigated by Miihlbach ({10, 11].
In the first section of this paper we therefore study these operators and prove new
results, such as a contour integral representation and a multistep-formula; the latter
one expresses — in closed form — a generalized divided difference of order m+j by those
of order m , for arbitratry j € IV . This makes it possible to compute generalized -
divided differences recursively, even if the underlying function space is spanned by a
non-complete Chebyshev system.

AMS Subject Classification: 41A15, 65D07

Key Words and Phrases: Generalized B-Splines, Divided Differences, Recursion
Schemes. .
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0. Introduction

Within the theory of spline functions, there was — starting with the fundamental
work of Curry and Schoenberg (3, 4] - always great interest in such splines, which have a
finite support, the so-called B-splines. There exist a lot of interesting studies in this field,
and in addition to the Schoenberg/Curry paper we only refer here to de Boor [1]; for a nice
compendium of the properties of these functions see e.g. Schumaker [16], Niirnberger [13]

or Meinardus [9].

In the last decade, authors also began to study B-splines from non-polynomial
spline spaces, such as trigonometric, hyperbolic or Chebychevian ones, see e.g. the papers
of Schumaker [15, 17, 18], Lyche and Winther [7] and Lyche [6]. The approach to these
various types of B-splines is very similar in all cases, namely the use of a suitable divided-
difference operator, applied to a proper generalization of what is called “truncated-power-

function” in the polynomial case.

In the present paper we give a unified approach to almost all these different types
of splines, i.e. we define — using generalized divided differences — a general type of B-
spline function, which covers the ones listed above as special cases. The only condition
that the spaces under consideration must satisfy is that of being translation invariant, a

fundamental property which we are going to define later.

The organization of the paper is as follows: In section 1 we begin with the defini-
tion of generalized divided differences, which is originally due to Popoviciu [14] (cf. also
Karlin [5] and Miihlbach [10, 11]). Then we prove a “multistep formula” for generalized
divided differences in closed form, i.e. a relation which allows us to compute a generali-
zed divided difference of order, say, m + j , directly from those of order m for arbitrary
j € IN . This generalizes results of Miihlbach {10, 11] and enables us to compute genera-
lized divided differences recursively, even if the underlying function space is spanned by a
non-complete Chebyshev system. Furthermore, we give a contour integral representation

of the generalized divided difference operator.

In section 2 we define B-splines from a quite general function space. This is done
by applying the divided difference operator from section 1 to a proper generalization of the

well-known truncated power functions. Moreover, we apply our result from section 1 in
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order to obtain a representation of generalized B-splines via a complex contour integral;
this covers known results for the case of polynomial (Meinardus {8]) and exponential

splines (Walz [19]).

In the final section 8 we apply some of our results to an (hopefully) illustrative -
example, which is a little bit different from the standard cases of polynomial, trigonome-"
tric, hyperbolic or exponential splines. However, as we shall see, all these spline classes

are covered by our general approach.

1. Generalized Divided Differences

The so-called generalized divided differences, introduced by Popoviciu [14], will
be the basis for our investigations. We are going to use the following notation: For

functions (resp. functionals) fo,..., fi and numbers (resp. functions) ¥o,...,Yr , We set
folwo) -+ -+ Solyw)

det(f0 oo fk) := det
Yo v o Yk

fk(.y()) fk(yk)

Then the suitable definition of generalized divided differences is as follows:

Definition 1.1: Let z,,...Z,41 be k+ 1 mutually distinct points from a real
interval I, and let the real functions {fo,---, fi} form a (not necessarily complete)
Chebyshev system on [ .

Then the generalized divided difference Ay of a function f with respect to the

space

F := span{fo,..., fx}

is defined as

xl/ . > e e xl/-}'k

det [ fo o fr f
Ap( oo f) = detgf” e it Sk % '
T

(1.1)

v .o ... zl/+k

We shall also use the notation A?k( f). The number k is called the order of the
divided difference. '
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Obviously, Ar is a linear functional on F, which annihﬂates the subspace

Fy_1 := span{fy,..., fs—1} of F and is normalized by
AZR(f) = 1.

Therefére, some ideas developed in [2] can be applied, which will allow us to obtain some

interesting new results on generalized divided differences .

~ The first one is the following “multistep formula”, which contains certain known
recurrence relations for generalized divided differences as special cases, cf. [10, Theo-

rem 1], and [11, Corollary 2.16]. One should also compare Theorem 2.1 in [11] and
Theorem 4.3 in [2].

Theorem 1.2: - Forve Z, m€ INy and j € IN with m+j < k we have the
identity N
v,m v W
det(AfF f... AFfJ )
v,m+J n e n+j—1
AF +J(f) = Au.lm s i Au+]-m ’ (1'2)
det ( 7 e R e )
f-m fm+j—1 f‘m+j

provided that the denominator in (1.2) is different from zero.

Proof. Let us try to write A';:m"'j as a linear combination of the Ag’s of order m,

i.e. search for coefficients ay,...,a;, such that
‘ i :
AFH() = DTS (1.3)
n=0
Putting in (1.3) successively f = fu,.-., fingj, We see that the a,’s are solutions of

the following linear system of equations:

AL (fgs) AR (fma) o AFT () a9 1
A?m(fnv{-j—l) A‘;:'+l"n(fm+j—1) e Al;:~+']'7_n(fm+j-—1) 0
Al;r’m(,fm) Al[/;l—l,m(fm) . A;—*‘jym(fm) a; 0

and application of Cramer’s rule proves the assertion of the theorem. O

Obviously, formula (1.2) can be used in order to compute divided differences of

order m + j directly from those of order m, i.e. without using the expressions

m+1 v,m+j—1
AL AY . (1.4)
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This is of course essential if we have a non-complete Chebyshev system F,i.e. if some

of the numbers in (1.4) might not be defined.

Let us investigate some special cases of Theorem 1.2. f m = 0, then (1.2) is

nothing else but a complicated form of the definition (1:1) (with j instead of k), since
A;:()(f) = f(z.)/ fo(zv) -
Now let m be arbitrary and j = 1. Then we have
(A?Hﬁ A?“%ﬁ)
et

7 (fm) A;*i’m(fm)
<A‘F’m(fm+1) AIF+ 17”(fm+1))
det

vmg) AR (fu)

_ AR -8R ) (1.5)
AR (fos1) = AFT" (frsn).

A?m,-f-l (f) -

since ‘A%™(fn) = 1. This is precisely the “ysual” recurrence formula for generalized
divided differences , which is a very fundamental property and was found by Miihlbach
in [10] with other methods.

Finally, analyzing the case j = 2 in the same way would lead to a formula similar to the

two-step-formula of Corollary 2.16 in [11].

It is well-known (see e.g. [12]) that the polynomial divided differences possess a
representation via a complex contour integral. The following theorem gives the corre-

sponding result for the generalized divided differences.

Theorem 1.3: For arbitrary, but fized v and k, and with the notations from
above, let A(z) denote some entire function, which has the simple zeTos T,,.. ., Tutk
and no others, and let C be a simply closed and rectifiable curve in the complez
plane, such that the points T,,...,Tu+k lie inside of it. Furthermore, assume that
the functions f, fy,..., fr have analytic continuations into the complez plane, and

that for j=0,...,k—1

for |z| — oo .

£ _ e
Ay = )

Then, if the number
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is different from zero, the generalized divided difference Ar has the representations

AF(mUa---azu+k;f) 27!'1,9 / ;Z((Z)) (16)

and
v+k

(1.7)

. - 1
Ap(2uy. . Zurns ) = O

The proof of (1.6) is similar to that of Theorem 3.3 in [2], to which we refer here, while
(1.7) follows easily through the residue theorem. o O

The case of polynomial divided differences is recovered by setting f;(z) i= zJ
j=0,...,k,and A(z):=(z- z,)+--(z = z,4%) . In this case we have @ =1.

2. Applications to Generalized B-Splines

In this section we shall use the generalized divided differences in order to define
generalized B-splines, i.e. spline functions with minimal support, which belong piecewise
to the space F. To do this, this space should possess a certain property, which we are

now going to define. We shall always work on the whole real line; restrictions to a finite

interval are easy to manage.

Definition 2.1: Let, for some m € IN, F denote the linear space
F := F, := span{fo,...,fmy CC"(R).

We say that this space has the translation property (or that it is translation invariant),

if for each f € F and each fixed z € IR the mapping f(t—z), regarded as a function. ..
of t, belongs to F; in other words, if for all z,t € IR and for all f € F there exist

coefficients co(2),---,cm(z), such that

m

fie-2) = Y _ci(z)- fi(1) .

=0

Easy examples for spaces possessing the translation property are the space II,, of poly-

nomials and the space

E, = span{l,exp(t),...,exp(mt)}
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of real exponential sums. Furthermore, spaces of functions which satisfy an algebraic
addition theorem, such as trigonometric or hyperbolic sums, possess the translation pro-

perty. A counterexample is given by the two-dimensional space span{l,log(t)}.

From now on, we assume all spaces under consideration to possess the translation
property. For the definition of generalized B-splines, which is our aim, we shall need

a proper generalization of the truncated power-functions; this will be done in the next

definition.

Definition 2.2: Let, for some m € IN', m > 2, the spaces
F,, := span{fo,-.., fm} and F, _1:= span{fo,.-., fu-1}

possess the translation property. Furthermore, let there exist a function h(t) =
hy-1(t) € Fi1,s which is strictly positive or strictly negative on IRt and has a zero
of order (m—1) in t=0. '

We say that a function g(t) = gm-1(t) is a generalized truncated power function or a

Green’s function of F,,_1,ifit can be written in the form

oy = [© if <0,
m— t) =
G- b1 (), ift> 0.

We note in passing that the function g(¢) belongs to the class C™%(IR). We now are

in the position to prove the following fundamental theorem:

Theorem 2.3: With the notations and definitions from above, define the follounng

function of z:

Bmu(z) = AF (zus .. -,zu+1n;g1n—l(t - 2)) 9 (21)

"

where the divided difference has to be taken with respect to t. Then the following

assertions are valid:

1) The function By, is a spline function from the space SF,_1(IR), t.e. 3t 1s
(m — 2)— times continuously differentiable on IR and its restriction to each knot
interval Iy := [z, Tp41), K=V, v+ M — 1, belongs to Fpi-1;

2) The function B,., has finite support, i.e.:

Bn,(¢) = 0 ifz<z, or T2Tuim -
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Proof. Obviously (cf. also equation (1.3)) there exist coefficients a,,...,Qv4m such

that B,,, can be written in the form

v+m

Buu(z) = Y aig(zi—2). (2:2)
Now let z belong to the interval I . Then (2.2) becomes

v4+m

Z a;h(z; — ), (2.3)

i=k
which is a function from F,,_1 , due to the translation invariance of this space.
Furthermore, (2.3) yields that the difference between the restrictions of B,,, to I
and I, equals

ay h(z, — ),

and therefore has a zero of order (m — 1) in z,; this proves the first assertion.

To show the second one, we first note that, if £ > Z,+m , the argument of the
divided difference in (2.1) is always zero, and therefore B,..,{(z) =0 in this case.
Now let z < z, . Then the translation invariance of F,,_; yields the following equations:
Buo(z) = Ap,(Zus-eorTugm; bt —2)) |

m—1

AF'" (33;,, ey Tyugms Z Cj(il!)fj(t))

=0

- m—1

Z c;/(2)AF, (Tus - - s Topms filt))

=0

= 0,
since the generalized divided difference A, annihilates the subspace F, -1 . O

An application of Theorem 1.3 to (2.1) yields the following contour integral re-
presentation of the generalized B-spline B, , which covers the corresponding results for

polynomial (8] and exponential [19] B-splines as special cases.

Theorem 2.4: Adopt the notations and assumptions from Theorem 1.3, and let,
for z € R, C(z) denote some simply closed and rectifiable curve in the complez
plane, such that all knots z,, with z <z, < z,4m and no others lie inside of it.
Then the generalized B-spline function B,., has the representation

1 hm—l(z _ (B) ‘
1 [ oG, 2.4
an(:c) 2711 §) () A(Z) ’ ( )
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Proof. Let z € I, , and denote the right hand side of (2.4) by J,,(2). Then the residue

theorem yields

1 vtm ho—i(z —.;z)
Jm,,(:l:) = = mmrATe 2
f ugu Al(zy)
}L)k
Q Hu=v AI((L'“_) ’
(1.7)
= AFm(mlM-°-’mu+1n;gm—1(t—Sl?)) .
This completes the proof of Theorem 2.4. 0

We have seen so far how to define B-spline-functions for a rather arbitrary spline
space SF,,_; . Of course one would like to comput'e the functions B,,, via a recurrence
relation, and this is possible thanks to the multistep fomula (1.2) (which contains the
usual recursion formula (1.5) for generalized divided differences as special case). Mo-
reover, using the relation (1.2) one can do this, even if the system {fp,...,fm} is a
non-complete Chebyshev system; this is for example the case for trigonometric or hyper-

bolic splines.

3. An Illustrative Example

. As pointed out above, our definition (2.1) covers most of the existing approaches
to the various B-spline-functions, such as the polynomial, exponential, trigonometric
and hyperbolic ones, cf. deBoor [1], Curry and Schoenberg (3, 4], Lyche [6], Lyche and
Winther [7], Meinardus (8], Schumaker [15 - 18] and Walz [19]. We do not want to
carry out now these special cases once again, but treat another example here in order to

illustrate our approach.

Let us study the four-dimensional space F3, which is spanned by the functions

9

fot):=1, fi(t):=t, fo(t) =€ and fi(t):=1",

and its subspace
F, := span{l,t,e'}.

The function
hy(t) == 1+t— et eR
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is strictly negative on IR* and has a double zero in t = 0; therefore, according to

Definition 2.2, the function

(o, ift<0,
9(t) = g:(t) = {

1+t—et, ift>0

is a Green’s function of F» and belongs to the class Ci(ﬂ%) . For given knot sequence

{z;}, we ask for B-splines from the space
SF, = {se C'(R);s(z), = ax + bz +cpe” ,k=v,...,v+m=— 1}.

The solution to this is given Theorem 2.3; we have

l 1 1 1
Ty, Ty41 Ty42 Ty43
e'rv eTV +1 e“l:V +2 e17V+3
z,— T T, - T T4 — & 43— T
B;}U(l’) — g( i ) g(l +? 1 ) g(ll+7 1) g( +3 ) , (31)

T, Tugl Tud2 Todl
eﬁu e‘ru+l e*"u-’-‘l emu-(-f}

2 2 2 2
Ty Tr+1 v42 v43
and an elementary calculation shows that indeed

By (z) =0 ifz<z, or 22Ty,

according to Theorem 2.3.
Furthermore, we calculate the coefficients «; in the representation

w43
By (z) = Y ajg(z;-z). (3.2)

i=v
This can be accomplished either via the theorem of residues, applied to the contour inte-
gral representation (2.4), or via Cramer’s rule, applied to (3.1). We choose the second pos-
sibility and obtain, since both numerator and denominator are “quasi-Vandermondians”,

easily the result: For j=v,...,v+3, the coefficient a; in (3.2) equals

with

v43 (-1)Himl ifp<y

N, = g, -eln . (z3— o), where 0,; = ‘
i Z wi H f [ (_1)/l.+_'/’ if“‘ > j’

w=v uSn(ﬂSu‘#‘X
n#i a.8€{u.i},
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and :
v+3
D= 3 (-1 e (25 - 2a)
Hn=v r<a<A<r+3d
a.3Fpn

Finally, we would like to apply the multistep formula (1.2) to this example, i.e. to the
B-spline Bj,(z) = A’,’;““L"}(g-_»(t — z)). In the notation of Theorem 1.2 we have here
m+ j = 3, so we can take either m = 2,7=1o0r m=1,5=2 (in addition to the
trivial cases m =3 and m =0). '

Choosing m = 2,7 = 1 leads to the representation

( Au_’ e Au+l ’( t) )
By(z) = Av3(g(t—z)) A'3(g(t - 2))
3w = (A""‘)(e') A”'H'?(e’)) )
A”"')(t"’) Au+l.‘.’(t‘.’) :

where each entry is a quotient of two (3 X 3)- matrices. More suitable for numerical

computations is the choice m=1,7 =2, which leads to the formula

1 1 1
Au.l(el) 'Au+1.1 (el) Au+‘2.l(el)
v.l -z v+1.1 -z v+2.1 _
bufe) = AAIE) ATl z) ATl ) VA

A"'l(et) A"‘H'](e’) Au+2.1(ei)
T, + 41 To4l + T2 Tu42 + Ty43

where each entry is just a first order divided difference of the form

fe) = f@in)

ST T T4

APY(f) =
For the representation (3.3) we used the fact that, for all 7,

A (t)=1 and ANy =z;+zjp1 -

In this paper, in particular in Theorem 2.3, we have seen how to define B-spline-
functions for a rather general spline space SFn,_1, and we worked out that the transla-
tion property seems to be fundamental for a space F in order to allow the definition of
B-splines via divided differences. We hope very much that this will inspire new investi-

gations in the theory of non-polynomial spline functions.
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