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Abstract: Within the theory of spline functions, there was always great interest in
the study of B-splines, i.e. splines with a finite support. In addition to the classical
polynomial case, there exist also various approaches to the definition of B-splines from
other function classes, such as trigonometrie or hyperbolic ones (cf. section 0). In the
present paper we define B-splines from a rat her general function space, which covers
almost all existing approaches as special cases. The only condition that the spaces
under consideration must satisfy is that of being translation invariant, a fundamental
property which we are going to define in section 2.
Our definition of generalized B-splines is based on generalized divided differences,
which go back to Popoviciu [14] and were further investigated by Mühlbach [10, 11].
In the first section of this paper we therefore study these operators and prove new
results, such as a contour integral representation and a multistep-formula; the latter
one expresses - in closed form - a generalized divided difference of order m+ j by those
of order m, for arbitratry j EIN. This makes it possible to compute generalized
divided differences recursively, even if the underlying function space is spanned by a
non-complete Chebyshev system .

.
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o. Introduction
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Within the theory of spline functions, there was - starting with the fundamental

work of Curry and Schoenberg [3,4] - always great interest in such splines, which have a

finite support, the so-called B-splines. There exist a lot of interesting studies in this field,

and in addition to the SchoenbergfCurry paper we only refer here to de Boor [1]; for a nice

compendium of the properties of these functions see e.g. Schumaker [16], Nürnberger [13]

or Meinardus [9].

In the last decade, authors also began to study B-splines from non-polynomial

spline spaces, such as trigonometrie, hyperbolic or Chebychevian ones, see e.g. the papers

of Schumaker [15, 17, 18]' Lyche and Winther [7] and Lyche [6]. The approach to these

various types of B-splines is very similar in all cases, namely the use of a suitable divided-

difference operator, applied to a proper generalization of what is called "truncated-power-

function" in the polynomial case.

In the present paper we give a unified approach to almost all these different types

of splines, i.e. we define - using generalized divided differences - a general type of B-

spline function, which covers the ones listed above as special cases. The only condition

that the spaces under consideration must satisfy is that of being translation invariant, a

fundamental property which we are going to define later.

The organization of the paper is as follows: In section 1 we begin with the defini-

tion of generalized divided differences, which is originally due to Popoviciu [14] (cf. also

Karlin [5] and Mühlbach [10, 11]). Then we prove a "multistep formula" for generalized

divided differences in closed fonn, i.e. a relation which allows us to compute a generali-

zed divided difference of order, say, m + j ,directly from those of order m for arbitrary

j EIN. This generalizes results of Mühlbach [10, 11] and enables us to compute genera-

lized divided differences recursively, even if the underlying function space is spanned by a

non-complete Chebyshev system. Furthermore, we give a contour integral representation

of the generalized divided difference operator.

In section 2 we define B-splines from a quite general function space. This is done

by applying the divided difference operator from section 1 to a proper generalization of the

well-known truncated power functions. Moreover, we apply our result from section 1 in
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order to obtain a representation of generalized B-splines via a complex contour integral;

this covers known results for the case of polynomial (Meinardus [8]) and exponential

splines (Walz [19]).

Inthe final section 3 we apply some of our results to an (hopefully) illustrative'

example, which is alittle bit different from the standard cases of polynomial, trigonome- .

tric, hyperbolic or exponential splines. However, as we shall see, all these spline classes

are covered by our general approach.

1. Generalized Divided Differences

The so-called generalized divided differences, introduced by Popoviciu [14]' will
be the basis for our investigations. We are going to use the following notation: For

functions (resp. functionals) fn, ... , hand numbers (resp. functions) Yo,... , Y~' , we set

det (fo
Yo (

fO(YO)

f1 .. , h := det :... ... Yk) :
h(Yo)

Then the suitable definition of generalized divided differences is as follows:

Definition 1.1: Let XL"" .Xv+k be k + 1 mutually distinct points from areal

interval I, and let the real functions {fo, ... ,fd form a (not necessarily complete)

Chebyshev system on I.
Then the generalized divided difference D.1" of a function f with respect to the

space
F '- span{fo, ... , fd

is defined as

det (fn
Xv

.- det (fo
XII

h-l

h-l
(1.1)

We shall also use the notation I::i.i (f). The number k is called the order of the

divided difference.
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Obviously, t:::.F is a linear functional on F, which annihilates the subspa.ce

Fk-1 ._ span{/o, ... , /k-d of F and is nonnalized by

11 k(/ )ßF k = 1.

Therefore, some ideas developed in [2] can be applied, which will allow us to obtain some

interesting new results on generalized divided differences .

The first one is the following "multistep formula" , which contains certain known

recurrence relations for generalized divided differences as special cases, cf. [10, Theo-

rem 1]' and [11, Corollary 2.16]. One should also compare Theorem 2.1 in [11] and

Theorem 4.3 in [2].

Theorem 1.2: For l/ E 7Z, m E INo and j E IN with m + j ::;:.k we have the

identity
det (ß~~'" t:::.~+lj.m)

Im I",+,i-I

(
t:::.v.m . ßII+J•m) ,

det F F
Im Im+.i-1 Im+j

provided that the denominator in (1.2) is different from zero.

(1.2)

Proof. Let us try to write ß~~m+.ias a linear combination of the ßF'S of order m,

i.e. search for coefficients au, ... , aj , such that

.J

ß~~m+.i(J) = L apt:::.~!11.1II(J) .
1/.=0

(1.3)

ap 's are solutions of

o
o

o
ao 11\ v+j.lll(f .)

UF "'+J
1\1I+,i.1I1(/ )UF m+,i-1

and application of Cramer's rule proves the assertion of the theorem.

Putting in (1.3) successively f = fm, ... , f",+,i I we see that the

the following linear system of equations:

I\II.m(f ) 1\1I+1''''(f.)
UF ",+,i. UF m+j
1\11.111(/ ) 1\1I+1''''(f . )uF 111+j-1 UF m+J-1

Obviously, formula (1.2) can be used in order to compute divided differences of

order m + j directly from those of order m, i.e. without using the expressions

I\II.m+1 1\1I,1II+.i-1
UF ""'UF .

(1.4)
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This is of course essential if we have a non-complete Chebyshev system F, Le. if some

of the numbers in (1.4) might not be defined.

Let us investigate some special cases of Theorem 1.2. If m = 0, then (1.2) is

not hing else but a complicated form of the definition (1:1) (with j instead of k), since

D.~:0(f) = f(xv)/ fo(xv).
Now let m be arbitrary and j = 1. Then we have

6.';;1Il(f) - 6.~+1,1Il(f)
/l.v,m(f ) _ /l.v+1.11I(f )'
UF m+l UF 111+1 .

(1.5)

since6.';;'" (fm) = 1. This is precisely the "usual" recurrence formula for genera.lized

divided differences , which is a very fundamental property and was found by Mühlbach

in [10] with other methods.
Finally, analyzing the case j = 2 in the same way would lead to a formula similar to the
two-step-formula of Corollary 2.16 in [11].

It is well-known (see e.g. [12]) that the polynomial divided differences possess a

representation via a complex contour integral. The following theorem gives the corre-

sponding result for the generalized divided differences.

Theorem 1.3: For arbitrary, but fixed l/ and k, and with the notations from

above, let. A(z) denote some .entire function, which has the simple zeros Xl'" .• , XII+k

and no others, and let C be a simply closed and rectifiable curve in the complex

plane, such that the points Xv, ••• , XII+k lie inside of it. Furthermore, assume that

the functions f, fu, ... ,h have analytic continuations into the complex plane, and

that for j = 0, ... , k - 1

Then, if the number

Ifi(z)1
IA(z)1

n ~ 1h(z)
.- 27ri c A(z)
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(1.6)

is different from zero, the generalized divided difference ßF has the representations

ßp(xv,"', xv+!.:;f) = _1_ r I(z) dz
21l"i n Je A(z)

and v+k
= .!- L l(x~l)

n "='1 A'(x/l)
(1.7)

The proolof (1.6) is similar to that of Theorem 3.3 in [2], to which we refer here, while

(1. 7) follows easily through the residue theorem. 0

The ease of polynomial divided differenees is reeovered by setting Ij{z) := zj ,

j = 0, ... , k ,and A( z) := (z - zv) ... (z - Zv+k)' In this ease we have n = 1 .

2. Applications to Generalized B-Splines

In this secti on we sha.ll use the genera.lized divided differenees in order to define

genera.lized B-splines, i.e. spline functions with minimal support, whieh belong pieeewise

to the spaee F. To do this, this spaee should possess a eertain property, whieh we are

now going to define. We sha.ll always work on the whole realline; restrictions to a finite

interva.1 are easy to manage.

Definition 2.1: Let, for some mEIN, F denote the linear spaee

F := Fm := span{/o, ... , 11Il} C G1Il (IR) .

We say that this spaee has the translation property (or that it is translation invariant),

if for eaeh I E F and each fiXed x E IR the mapping I( t - x) , regarded as a function.
of t, belongs to F j in other words, if for a.ll x, t E IR and for a.ll I E F there exist

coeffieients eo( x), ... , cm( x) , such that
m

I(t -x) = L eAx), Ij(t) .
j=O

Easy examples for spaces possessing the translation property are the space 11m of poly-

nomia.1s and the space

E
IIl

.- span{1, exp(t), ... , exp( mt)}
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of real exponential sums. Furthermore, spaces of functions which satisfy an algebraic

addition theorem, such as trigonometrie or hyperbolic sums, possess the translation pro-

perty. A counterexample is given by the two-dimensional space span{1,log(t)}.

From now on, we assume all spaces under consideration to possess the translation

property. For the definition of generalized B-splines, which is our aim, we shall need

a proper generalization of the truncated power-functions; this will be done in the next

definition.

Definition 2.2: Let, for some mEIN, m 2: 2 , the spaces

Fm:= span{fo, ... ,fll'} and FIII-l := span{fo, ... ,flll-1}

possess the translation property. Furthermore, let there exist a function h( t) =
hm-l(t) E Fm-l , which is strictly positive or strictly negative on JR+ and has a zero

of order (m - 1) in t = 0 .
We say that a function g(t) = g",-l (t) is a generalized truncated power function or a

Green's function of Fm-l , if it can be written in the form

{
0, if t ~ 0,

gm-l(t) =
hm-l(t), ift>O.

We note in passing that the function g(t) belongs to the dass Cm-2(JR). We now are

in the position to prove the following fundamental theorem:

Theorem 2.3:

function of x :

With the notations and definitions from above, define the following

(2.1)

where the divided difference has to be taken with respect to t. Then the following

assertions are valid:
1) The function Bmv is a spline function from the space SFm-l(JR), ~.e. it is I

(m _ 2)- tim es continuously differentiable on JR and its restrietion to each J.:not

interval Ik := [Xk, Xk+l] , k = 11, ••• ,11 + m - 1, belongs to Fm-l ;

2) The function B"'l' has finite support, i.e.:

if x ~ x v or x 2: x v+ m •
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Proof. Obviously (cf. also equation (1.3» there exist coefficients avI", I av+m I such

that Bmv can be written in the form
v+m

Bmv(x) = L ajg(xj - x) .
j=v

Now let x belong to the interval h. Then (2.2) becomes

(2.2)

(2.3)

(2.4)

v+mL aih(x; - x) I

i=k

which is a functionfrom F",-l I due to the translation invariance of this space.

Furthermore, (2.3) yields that the difference between the restrictions of B",v to h-J
and h equals

and therefore has a zero of order (m ~ 1) in Xl.'; this proves the first assertion.

To show the second one, we first note that, if x ~ x,,+'" , the argument of the

divided difference in (2.1) is always zero, and therefore BI/l"(x) = 0 in this case.

Now let x ~ x" . Then the translation invariance of Fm-I yields the following equations:

B",u(x) = ßF",(x", ... ,x"+,,,;h(t-x))
m-I

ßp,.(x", ... , xv+",; L Cj(x )f;(t))
j=U

m-IL cAX)ßF", (X", ... ,X"+1II; fAt))
.i=U

o ,
since the generalized divided difference ßPm annihilates the subspace F",_I . 0

An application of Theor~m 1.3 to (2.1) yields the following contour integral re-

presentation of the generalized B-spline B",v I which covers the corresponding results for

polynomial [8] and exponential [19] B-splines as special cases.

Theorem 2.4: Adopt the notations and assumptions from Theorem 1.3, and let,

for x E IR, C( x ) denote some simply closed and rectifiable curve in the complex

plane, such that all knots x,, with x < X'I ~ xv+m and no others lie inside of it.

Then the generalized B-spline function Bmv has the representation
1 1 hm -I (z - x)

B",v(x) = 2 'n _ A() dz.
1l'~H (.'(~,) Z
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Proof. Let xE h, and denote the right hand side of (2.4) by J1Ilv(x). Then the residue

theorem yields
1 V+1Il

-Ln I'=V
I,>k

h1ll-1 (XII - x)
A'(xll)

1 V+'" ( )
""" 9m-l xI' - Xn~

H A'(xl')1'.= V

(l.i) DoF",(Xv," .,Xv+m;Ym-l(t - x)).

This completes the proof of Theorem 2.4. o

We have seen so far how to define B-spline-functions for a rat her arbitrary spline

space SFm-I, Of course one would like to compute the functions Bmv via a recurrence

relation, and this is possible thanks to the multistep fomula (1.2) (which contains the

usual recursion formula (1.5) for generalized divided differences as special case). Mo-

reover, using the relation (1.2) one can do this, even if the system {fo, ... , fm} is a

non-complete Chebyshev system; this is for example the case for trigonometrie or hyper-

bolic splines.

3. An Illustrative Example

As pointed out above, our definition (2.1) covers most of the existing approaches

to the various B-spline-functions, such as the polynomial, exponential, trigonometrie

and hyperbolic ones, cf. deBoor [1]' Curry and Schoenberg [3, 4]' Lyche [6]' Lyche and

Winther [7]' Meinardus [8]' Schumaker [15 - 18] and Walz [19]. We do not want to

carryout now these special cases once again, but treat another example here in order to

illustrate our approach.

Let us study the four-dimensional space F:3, which is spanned by the functions

fo(t) := 1, fl(t) := t, h(t) = et and h(t):= t2 ,

and its subspace

The function
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" ,

I

i

is strictly negative on JR+ and has a double zero in t

Definition 2.2, the function

0; therefore, aeeording to

if t ~ 0,
g( t) g'2(t) {

0,

1 + t - el, if t > 0

is a Green's function of F'2 and belongs to the dass Ci (JR). For given knot sequenee

{x j} ,we ask for B-splines from the spaee

The solution to this is given Theorem 2.3; we have

1 1 1 1("
Xv+l xv+'2 ',+3 )

eJ'v eTv+1 eJ'v+2 eJ'v+)

B;Jv(x)
g(x" - x) g(X"+l - x) g(x,,+'2 - x) g(X,,+:3 - x)

C
1 1

1 )Xv X1,+1 X 1'+'2 Xv+:3
eJ'v eJ'v+l e.1"v+2 eJ'v+:J

.) .) .) .)

x;, x;,+l x;,+'2 x;,+:3

(3.1)

and an elementary ealeulation shows that indeed

aeeording to Theorem 2.3.
Furthermore, we ealeulate the eoeffieients (X,i in the representation

1,+:3I: (Xjg(x,i - x) .
./=£1

(3.2)

This ean be accomplished either .via the theorem of residues, applied to the eontour inte-

gral representation (2.4), or via Cramer's rule, applied to (3.1). We ehoose the seeond pos-

sibility and obtain, sinee both numerator and denominator are "quasi- Vandermondians" ,

easily the result: For j = v, ... , v + 3, the coefficient (Xj in (3.2) equals

N"
(Xj = -L

D

with

1'+32: J'
(j ." • e " ./1.1

11-=1.'

I' i'i

II (Xt3 - Xl», where (j/lj

v<(\<f~<i,+:l
;;.Bilp.i)

{

(_1)/I+j-1, if J.L< j

(-l)1'+,i, ifJ.L>j,
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and
D

/1+3L (_l)P-v, e~'I'.

1'=/1
II

,,<,,<B<,,+'l
- (\.13~,

(X;3 - Xu) •

Finally, we would like to apply the multistep formula (1.2) to this example, i.e. to the

B-spline B3/1(X) = 6~1/+:\g:!(t - x)). In the notation of Theorem 1.2 we have here

m + j = 3, so we can take either m = 2,j = 1 or m = 1,j = 2 (in addition to the

trivia.l cases m = 3 and m = 0 ).
Choosing m = 2, j = 1 leads to the representation

where each entry is a quotient of two (3 X 3)- matrices. More suitable for numerica.l

computations is the choice m = 1, j = 2, which leads to the formula

(3.3)

where each entry is just a first order divided difference of the form

For the representation (3.3) we 1).sedthe fact that, for a.ll j,

In this paper, in pa.rticular in Theorem 2.3, we have seen how to define B-spline-

functions for a rather genera.l spline space S Fm-I, and we worked out that the transla-

tion property seems to be fundamenta.l for aspace F in order to a.llow the definition of

B-splines via divided differences. We hope very much that this will inspire new investi-

gations in the theory of non-polynomial spline functions.
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