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The description of an Rn-valued one form relative to an embedding

E.Binz

1) Introduction
Let M be a compact, smooth and oriented manifold. The collection of
all smooth embeddings of M into ffinequipped with the Coo-topology
is a Frechet manifold and is denoted by E(M,IRn) . The collection
A1(M,Rn) consisting of all smooth ~n-valued one forms of M , also
endowed with the COO topology,is a Frechet space. IRn is assumed
to be oriented and is equipped with a fixed scalar product <,> •

These notes describe relations between a given a E A1(M,Rn) and a
given i E E(MJRn) ; Two sorts of decomposition of a relative to i
are discussed and related. First we show that a splits into

a = dh + ß
00 nh E C (M,R ) ,

where
is

ß has only the zero as integrated parts. The other decomposition

a = C (i).di + di~C Ci) + di.B (i)a a a

with ca E,Coo(M,so(n)) and Ca(i) as well as Ba(i) are smooth, strong
bundle maps of TM skew-, respectively selfadjoint with respect to the
Riemanni an metric m(i) , the pullback of < > by i

The relation among these two splittings as well as the techniques presented
playa crucial role in elasticity theory.

Smoothness is always meant in the sense of [Gu].



2) Relations between a and i
Throughout these notes i E E(M,Rn) is a fixed (smooth) embedding and
a E A1(M,~n) a fixed (smooth) Rn-valued one form di E A1(M,Rn) is locally
given by the Fr~chet derivative of i . Clearly m(i)(X,Y)=<di X,di Y>
for all X,Y E rTM .

Our first observation is as follows:

Proposition 1 Given a E A1(M,rRn) and i E E(M,lRn) then there is a map
OO( n}-h(i) E C ~ ,IR ,.determined up to a constant such that

(1) a = dh(i) + ß(i)

h (i ) is ca11ed the.~integrab.le' part ofa. . The decompos it{Öil (1) ,of a
is maximal in the sense that the integrable part of ß(i) is zero

Proof: Let e1, ...,en be an orthonormal basis of Rn. Then
n

a(X) = ~ aS(X}es V X E rTM
s=l

for a uniquely determined family a1, ...,an E A1(M,~) of smooth
m-valued one forms of M. Clearly

For each s s= 1, ... ,n the one form a can be represented as

for a well defined Ys E rTM. This vector field splits according to
Hodge's decomposition uniquely into

Ys = gradiLs + Y~

Thus

where gradiLs means the gradient
the metric m(i) and div.Yo = 0

1

operator associated with m(i) .

of LS E Coo(M,IR) with respect to
.By div. we denote the divergence

1



1o

Now we define
h (i ) :

n= ~ 1:".es=l s s
arid

Then

ß(i )(X):

a = dh(i) + ß(i)

v X E rTM

Let us verify that this decomposition does not depend on the basis chosen.
Ta this end let el, ...,en E~n be any other orthonormal basis of Rn

-s - '-0 -and define a ,1:"s'Ys'hand ß analoguously as above. Omiting the
-variable i then for any s = 1,... ,n

~s(X) = <a(X), e~ > _= <dh(X), es> + < ß(X), es> =
--n _ n( 0) _

= < id1:"s(X).es,e~> + < ~ m i)(Ys'X .es,e~ >
n n= m(i)(gradi i)(1:"s.<eSe5»,X) + m(i)( iY~.< es,es>'X)

= < dh(X), es > + < ß(X), es > +

= m(i)(0radi TS'X) + m(i)(Y~,x)

Since gradi
since

n
~ (1:"<e ,e:..»1 s s S is a gradient with respect to m(i) and

and

we conclude due to the uniqueness of Hodgels decomposition
n -orad. ~ (1:". <e ,e-» = grad. 1:"s

~ 1 s=l s s s 1

n 0-0~ Ys < es,es > = Yss=l
Thus for any

dh(X) =
X E rTM we have
n - -~ <dh(X), es> es =5=1

n _
_~ <dh(X),
s=l

- -e >.es s
-= dh(X)

and n
ß(X)= ~ < ßX), es > .es = ~ < ß(X),e~ >.e = ß(X)5=1 s



Let us investigate the decomposition (1) in proposition 1 somewhat closer.
We have

a = dh(i) + ß(i)

h(i) = di Xn + hL(i)

for some well-defined Xh E rTM. 8y hL(i) we denote the pointwise
formed component of h normal to i(M) . The vector field Xh again
decomposes according to Hodge's decomposition into

Xh = X~ + gradi 4Jh with div X~ = 0 and 4JhE Coo(M,IR)

Hence dh(iYX = di V(i)X X~ + di(V(i)X gradi 4Jh+ W(i)h X)

again have

+ S(i)(Xh,X) .

Here diW(i)h X = dhL(i)(X)T. , where the upper indices T and L denote
the pointwise formed component tangential respectively normal to i(M) .
We remind thereader that Wh(i) is a smooth strong bundle endomorphism
of TM 'selfadjoint with respect to m(i). Let now h1 = h + z for
some z E IRn Then if we regard z as.a constant map in Coo(M,R)we

z = di Xz + zL .

However the vector field on Rn assigning to any z E (Rn the vector
z E!Rn is a gradient of some map <p E Coo(lR,IR)say. Hence if we form
CD 0 i then

Xz = gradi (CD Q i) .

Therefore h1(i)T = di X~ +gradi('~h+ (p6i)
= di X~1 + gradi 4Jh1 .

Again due to the uniqueness of Hodge's decomposition of Xh1 we conclude:



Proposition 2 Given a E A1(M,Rn) and i E E(M,Rn) , then
if the splitting a = dh(i) + ß(i) is maximal

for some h(i) E Coo(M,IRn)determined up to a constant and if for some
h1(i) E Coo(M,Rn) with h1(i) = h(i)+z and z E ~n

a = dh1(i) + ß(i)

then

Here X~ and X~l denotes the divergenee free part of Xh and Xhl
respeetively.

Next we will study a E A1(M,Rn) in relation to a fixed i E E(M,Rn)
from a quite different point of view.

Forany pair X,Y we set
T(a,i)(X,Y) : = < a(X), di Y>

Hence T(a,i) is a smooth two tensor on M , splitting uniquely into a
symmetrie and an antisymmetric part T(a,i)s and T(a,i)~ respectively.
If P: TM ~TM denotes the unique smooth strong bundle endomorphism

\

for which
T(a,i)(X;Y)= m(i)(PX,Y)

, ,

then

and
T{a,i}s(X,Y) = m(i)( ~ (P + P)X,Y)

T(a,i)a(X,Y) = m(i)( ~ (P - P)X,Y) .

Here P denotes the fibrewise formed adjoint of P with respect to m(i).
Let us set



Therefore
a(X) = a1(X) + di C X + di B Xa a

holds for any X E rTM. Clearly a1(X)(p) is a vector in the normal
space of Ti TpM für each p E M

ca E Coo(M,so(n))
Hence there is a unique smooth

where so(n) denotes the Lie algebra of SO(n) such that
a1(X) = ca . di X V X E rTM .

Thus we may state that a second decomposition of a relative to i

determined smooth, strong bundle endomorphisms

and
Ca(i) TM ------7 TM
B (i) TM ~ TMa

\which are with respect to m(i) skew-respectively selfadjoint and there is
a uniquely determined Ca(i).E:C

ooU'1,so(n))such that the follovJing relation
holds for all X E rTM :

(2)

Remark: Given a E A1(M,Rn) and i E E(MJRn)
then the exterior differential aT(a,i)a of T(a,i)a satisfies

(3) aTa(a,i) = 0 iff aa = 0

The reason is that the one-form < i,a >"EA1(M,lR) assigning to any
X E rTM the function <i,a(X» satisfies

a< i,a > ~ T(i,a)~ iff aa = 0

Nowwe will link the two descriptions of a relative to i as expressed
by the two propositions (1) and (2). To this end let a E A1(MJRn) and

/



i E E(M,~n) be given. Let
a = dh(i) + ß(i)

be the decomposition described in proposition (1). We split h(i) into
h(i) = di Xh + h~(i) .

Hence for any Y E rTM

(4) dh(i)Y = di ~(i)y Xh + Wh(i)Y +

+ S(i)(Y,Xn) + (d(h~)(Y))~ + ß(Y) .

and

Forming T(dh,i) , decomposing it into T(dh,i)s and T(dh,i)a. and using
(4) yieldsirillnediately

T(dh,i)s(X,Y) = m(i)(X,V(i)yXh) + m(i)(X,Wh(i)Y) .

Therefore
T(dh,j)a(X,Y) = ~(m(i)(X,V(i)YXh) - m(i)(Y,V(i)XXh)

T(dh~i)sCX,Y) = ~(m(i)(X,V(i)YXh) + m(i)(Y,V(i)yXh)
+ m(i)(X,Wh(i)Y)= ~Lx (m(i))(X,Y)+m(i)(X,Wh(i)Y). h

Here LX (m(i)) is the Lie derivative of m(i). Hriting for any Z E rTM
h

LZ (m(i))(X,Y) = m(i)([Z X,Y)
h h

where

is a strong smooth bundle endomorphism given by the theorem of Fischer-
Riesz, then c (i), C (i) and B (i) relate to h as followsa a a
(5)

(6)

.and

c (i)di Y = (d(dh~(i))Y)~ + S(i)(Y,Xh) + C (i).di Ya ~

Ca(i)Y = ~ (V(i)Xh - V'(i)Xh)Y+ Cß(i)Y

Ba(i)Y = ~ (7(i)Xh + V(i)Xh)Y + W(i)hY + Bß(i)Y =

= ( ~ ~X (i) + W(i)h'+ Bß(i))Y .
h
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--vHere V(i) Xh means the fibrewise formed adjoint with respect to
,Jm(i), which applied to vp E TpM is written as V(i)Xh(vp) for any

p E M. If we split furthermore Xh into

Xh = X~ + gradi~ with diviX~ = 0

(according to Hodge's decomposition) and taking
o = m(i)((V(i)gradi~ - ~(i) gradi~) X,Y) = 0

into account yields finally the desired relations

Proposition 4 Let a E A1(M,Rn) and i E E(M,IRn). Given any
h(i) E (M,~n) with

h(i) = di Xh(i) + h~ ~ xh(i)O T gradi~(i) + h~
as split according to t~e Hodse decomposition of Xh and

a = dh(i) + ß(i)

then.the coefficients in
a = c (i).di + di C (i) + di B (i)a a a

are determined by
(8) ca(i).di = d(dh~(i))~ + S(i)(Xh(i), ...) + cß.di

(9) Ca(i) = ~(V(i)Xh(i) - ~(i)Xh(i)) + Cß(i)

= ~ (V(i)Xh(i)o - V(i)Xh(i)o) + Cß(i)
and
(10) Ba(i) = ~ IbXh(i)o +gradi'.J,I(itl4h(i)+ Bß .
Hence
(11)

with v( i)

tr Ba(i) = div Xh(i) + tr ~lh(i)+ tr Bß =
= - ~(i)~(i) + tr Wh(i) + tr Bß

is the Laplace Beltrami operator of m(i)



The rest of this section is devoted to the covariant divergence of
Bh(i) and eh(i) . The covariant divergence diviA of any smooth
strong bundle endomorphism

A : TM :> TM
is defined as follows: Let ei, ...,em be any moving orthonormal frame
of TM. Then
(12)

r=m
div. A = ~ V(i)e (A) er .

1 r=l r
First we compute divi V(i)Xh . For any Y E rTM the equation

implies
(13)

L\( i)
,..,being the Laplace Beltrami operator of m(i) . To find div. V(i)Xh1 .

consider for any YE rTM the equations
~ N ~m(i)(V(i)e ,('.7(i)Xh)er,Y)= er(m(i)(v(i)Xh(er),Y))-m(i)(V'(i)Xh(7(i)e er),Y)

r r
.J- m(i)(V(i)Xh(er), V(i)e'Y)

r

= m(i)(er,v(i)erV(i)YXh) - m(i)(er,v(i)v(i)e yXh)
r

= m(i)(er,V(i)e (V(i)Xh)Y)
r

and
m(i)(v(i)y(V(i)Xh)er,er) = m(i)(er,V(i)y7(i)e Xh) - m(i)(er,7(i)V(i) e Xh)r . Y r

= m(i)(er,V(i)y(v(i)Xh)er) .

~ ~(m(i)(V(i)e (V(i)Xh)er,Y) - m(i)(V(i)y(v(i)Xh)er,er)) =
r

= Ric(m(i))(Y ,Xh)

Thus we find
m
~
r=l



and consequently

Here Ric(m(i)) denotes the Ricci tensor of m(i). The last equation
yields

j

Here Ric(i)Xh is defined via:
m(i)(R(i)Xh,Y) = Ric(m(i))(Xh,Y)

Now we immediately conclude

v Y E rTM .

(15) div ~X (i) = - ß(i)Xh + R(i)Xh + grad div Xhh

(16) 2 div Ch(i) = - .ß(i)Xh - R(i)Xh - grad div Xh
showing
(17) divi( ~ ~h(i) + Ch(i)) = - ß(i) Xh
and
(18) diV(~ ~h (i) - Ch(i) = Ric(i) Xh + gradi divi Xh .

These equations will be of interest later.

Let us restrict our attention to the case of
1 + dirn M = n .

Then since M is oriented we have the oriented unite normal vector
field N(i) along i . Hence h E COO(M,Rn) splits into

h(i) = di Xh + ~(i).N(i)
for some ~(i) E Coo(M,IR). Thus Wh(i) = W(i) if ~ = 1 . Denoting
tr W(i) by H(i) we immediately find



m
m(i)(div.(t(i).W(i)),Y) = ~ m(i)(V(i)e (-r(i)H(i))e ,Y) =

1 r=l r r
m

= ~ m(i)(gradi ~(i), W(i)Y) + m(i)(~(i)divi H(i),y)
r=l

and hence
(19) divi(~(i)W(i))= W(i)gradi ~(i) + ~(i)diviW(i)

Now by Codazzils equation (cf.[Kl]) yields
m m

(20) ~ m(i)(V(i)e (W(i))er,Y) = ~ m(i)(V(i)y(W(i))er,er) =r=l r.. r=l
= m(i)(grad H(i),Y) .

w~therefore have

(21) divi~(i)W(i) = W(i)gradi ~(i) + ~(i)gradi H(i) .

In turn equations (19),(20)~(9),(10),(15),(16),{17) and (lB) yield

(22)
and
(23) , div(Bh(i) - Ch(i)) = R(i) Xh + grad; divi Xh +

+ W(i)gradi ~(i) + ~(i)gradi H(i) .

We close this section by showing the following result:

Lemma 5 Let a E Al(M~Rn) and i E E(M,~n). If a has no integrable
part then a = ß and hence

Proof: We have for any X E rTM
m

a(X) = ß(X) = ~ m(i)(Y o,X)~s=l s s
- - nand any orthonormal frame e1, ...,en in m .



Hence
m

< a(X),di V > = m(i)((Cß(i) + Bß(i))X,V)= ~ m(i)(VsO,X)< e ,di v > .. s=1 s
Thus if e1, ...,em is a moving orthonormal frame in TM , then

m m
m(i)(diV.(Cp{i)+Bß(i)),V) = ~ ~ m(i)(V(i)e Vso,er)< ~s",di V >, r=1 s=1 r
Interchanging the summation yields (24).

Therefore we have due to (24) and (22)

Corollary 6 Let a E A1(MJRn) and i E E(M,Rn) and let a = dh+ß
as in (1). If h(i) = di Xl + ~.N(i) then

divi"(Ba(i) + Ca(i)) = div(Bh(i) + Ch(i)) =
= - D.(i)Xh + W(i)gradi ~+~.gradiH(i) .
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