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1 Introduction

Search situations occur often in our everyday lives. For example, we use search strategies

when we look for the best price of a certain product that we want to buy or when we search

for a new job. Conceptually, search tasks are representative of dynamic choice situations

in which we must decide between committing resources to an attractive proposition or

deferring the decision in the hope of receiving a better deal. Search tasks are attractive for

experimental studies in economics because of this simple decision structure that masks

a complicated optimization problem that, in most cases, cannot be solved without a

computer.

Behaviour in economic search situations has been investigated both theoretically and

experimentally in the fields of economics, mathematics and psychology since the 1950’s.

Seminal theoretical work in the economic strand of this literature was done by Simon

(1955) and by Stigler (1961). Since then, numerous authors have investigated variations

of search problems, and they have focused on examining the search strategies that people

use (e.g. Hey, 1981; 1982; 1987; Cox and Oaxaca, 1989; Kogut, 1990; Harrison and

Morgan, 1990; Sonnemans, 1998; 2000; Houser and Winter, 2004).

In price search tasks as well as in lottery tasks, people make financial decisions under

risk, and they thereby reveal their preferences. Do the preferences revealed by a simple

preference elicitation mechanism inform us on behaviour in search situations that involve

decisions in the same monetary range? In this paper, a lottery-based preference elicitation

mechanism is combined with a price search task in an economic laboratory experiment

to investigate the link between individual preferences and search strategies based on var-

ious utility-based models of search behaviour. The study provides evidence that people

set utility reference points relative to which they evaluate future outcomes in sequential

decision tasks.

This paper contributes to the theoretical development and experimental testing of various

utility-based search models and provides evidence that loss aversion, and not risk aversion,

helps explain observed search behaviour. More specifically, individual search behaviour is

better explained by a model that assumes sequential updating of utility reference points

than by search models that are based on expected-utility theory. The reference point

model helps to explain individual heterogeneity in sequential decision behaviour.

The findings are of interest for decision theory. They help to understand the determinants

and properties of individual search behaviour in markets (e.g. Zwick et al., 2003), and

they serve as a guide to theoretical and structural econometric specifications that explicitly

allow for individual heterogeneity in applied search theory. These specifications are being

developed in many fields, including research on consumer search and job search (Eckstein

and Van den Bergh, 2005). The sequentially risky decision nature of the search problem

makes the results interesting for theoretical and applied research in finance (Gneezy, 2003).



Finally, the findings complement research on rules of thumb in dynamic decision problems

(e.g. Lettau and Uhlig, 1999, Houser and Winter, 2004).

This paper first establishes links between search behaviour and individual preferences

by developing various search models, in particular the reference point model (Section

2). Then the experimental design (Section 3) and methodology to draw inferences about

search behaviour and preferences based on the experimental data (Section 4) are described.

Next, the link between the elicited preferences and the observed search behaviour is

investigated (Section 5). The methodology and findings are discussed in Section 6; Section

7 concludes.

2 Models of Search Behaviour

In this Section I derive the optimal search behaviour of an expected-utility maximiser,

both under risk neutrality (Section 2.1) and without restrictions on individual risk attitude

(Section 2.2). For the derivation of the decision rules, two cases are considered: In the first

case, the cost of each completed search step is treated as sunk costs; in the second case,

I derive the finite horizon optimal stopping rule assuming that subjects do not treat past

search costs as sunk costs. Finally, in Section 2.3, I develop the reference point model.

2.1 Optimal Stopping in Search Tasks under Risk Neutrality

Assume that a searcher’s goal is to purchase a certain good that she values at e100. The

searcher sequentially observes any number of realizations of a random variable X, which

has the distribution function F (·). In the current experiment, F (·) is a discrete uniform

distribution with lower bound e75 and upper bound e150. Let the cost of searching

a new location be e c. Assume that at some stage in the search process, the minimal

value that the searcher has observed so far is e m.1 Basic search theory assumes that

individuals treat the cost of each search step, once completed, as sunk costs (Lippman

and McCall, 1976; Kogut, 1990) and compare the payoff of one additional search step

with the payoff from stopping.2

Then, subjects solve the problem based on a one-step forward-induction strategy and the

expected gain from searching once more before stopping, G(m), is generally given by:

G(m) = − [1− F (m)]m︸ ︷︷ ︸⊗
−

∫ m

75

xdF (x)

︸ ︷︷ ︸⊕

−c + m. (1)

1 For the remainder of the derivation in this Section, the currency units are skipped.
2 Kogut’s (1990) findings show that a certain proportion of subjects does not treat search cost as sunk.

A model in which search cost are not treated as sunk cost is presented later in this Section.
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The term
⊗

accounts for the case in which a value larger than m is found with probability

(1−F (m)). In this case, m remains the minimum price. The term
⊕

stands for the case

in which a lower value than m is found and computes the expected value in this case.

There exists a unique value m∗ with G(m∗) = 0, if G(·) is continuous and monotonic.

Straightforward manipulation shows that the solution to this problem is identical to solv-

ing the following problem for m:

π(100−m) = (1− F (m))π(100−m− c) +

∫ m

75

π(100− x− c)dF (x) (2)

Here, π(·) is the payoff-function from the search game. The payoff is truncated at e0 in

the experiment:

π(x) = max{0, x} (3)

The left-hand side of equation (2) is the payoff from stopping, and the right-hand side

denotes the payoff from continuing search. It is found that the optimal strategy is to

keep searching until a value of X less than, or equal to, the optimal value m∗ has been

observed. For the search task considered in this paper, I find m∗ = 86. A risk-neutral

searcher has the following decision rule: Stop searching as soon as a price less than or

equal to e86 is found.

Now, consider that subjects do not treat search costs as sunk costs. That is, for their

decision whether to stop or to continue the search, they consider the total benefits and

costs of search; the agent stops searching only if the stopping value is higher than the

continuation value. It follows that the problem is treated as a finite horizon problem that

is solved backwards. Define St = {t,m} as the agents’ state vector after t search steps.

After the agent has stopped searching, she will buy the item and receives a total payoff:

Π(St) = max{0, 100−m− t · c}. (4)

The agent stops searching only if the continuation value of the search is lower than the

stopping value. The recursive formulation of the decision problem is therefore:

Jt(St) = max{Π(St), E[Jt+1(St+1)|St]}. (5)

E(·) represents the mathematical expectations operator, and the expectation is taken

with respect to the distribution of St+1|St. Again, this problem has the reservation price

property at every t. The reservation price begins at e86, first stays constant, then starts

decaying slowly, reaches e80 in the 19th round, and then decays at a rate of about one

per round from that point forward.

2.2 Stopping Rules in Search Tasks Without Restrictions on Risk Attitudes

The derivations above are based on the assumption of a risk-neutral searcher. It is indi-

vidually rational to use a risk-neutral optimal stopping rule only for risk-neutral subjects.
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As a more general case, I therefore consider a searcher with an arbitrary, monotone utility

function u(·). If the searcher ignores sunk costs and takes her decisions based on a one-

step forward-looking strategy, the equation that determines her reservation price m∗ then

has the following form that follows from (2):3

u(100−m) = (1− F (m))u(100−m− c) +

∫ m

75

u(100− x− c)dF (x) (6)

Equation (6) is solved numerically for the reservation price m∗(η), given the search en-

vironment and a utility function on gains that is parameterized entirely by a parameter

(vector) η. The solution has the constant reservation price property. Figure 1 shows the

constant reservation price decision rule for different risk attitude parameters of, e.g., a

CRRA- or a CARA-utility function. The more risk averse the searcher is, the higher her

constant reservation price value is. Henceforth, I refer to rules of this type as forward

optimal rules, keeping in mind that this rule is only optimal conditional on the individual

utility function and on the assumption of a one-step forward strategy that ignores sunk

costs.

Analogous to the derivation of the optimal search rule in the risk-neutral case, I now

consider that subjects do not treat search costs as sunk costs. Again, this is a finite-

horizon problem. After the agent has stopped searching, she buys the item and receives

a total payoff:

Πu(St) = max{0, u(100−m− t · c)}. (7)

The recursive formulation of the dynamic discrete choice problem is:

Ju
t = max{Πu(St), E[Ju

t+1(St+1)|St]}. (8)

This problem has, at every t, the reservation price property. The monotonically falling

reservation price implies that the agent should not exercise recall, i.e. she should not

recall previously rejected prices. Figure 2 plots the reservation price paths for a CRRA-

utility function specification; Figure 3 assumes a CARA-specification. Henceforth, I refer

to rules of this type as backward optimal rules. These rules are optimal search rules

conditional on the individual utility function.

From the theoretical deliberations so far it can be inferred that – regardless of what type

of rule subjects use, forward or backward optimal rules – the more risk averse a person

is, the earlier she should stop search, i.e. the higher is the reservation price that she uses.

3 This equation does not characterize the optimal solution to the search problem. However, it gives
the optimal strategy for a searcher who ignores sunk costs and who uses a one-step forward induction
strategy and who has arbitrary risk attitudes.
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2.3 The Reference Point Model

The reference point model (henceforth: rp-model) claims that during the search task,

subjects set reference points relative to which the decision whether to stop or to con-

tinue the search is evaluated in terms of gains and losses. While the models based on

EU-maximisation (see previous Subsection) implicitly assume that the reference point is

always at zero payoff, the reference point model assumes a reference point which is always

at the current payoff.

Concretely, the rp-model assumes that subjects consider the payoff that they have in hand

for sure (i. e. the value of the good minus the best price observed minus the search cost

incurred so far) as their reference point. Relative to this reference point, any lower payoff

potentially obtained by continuing the search would be a loss, and any higher payoff would

be a gain.

To formalize the model, let u(·) be the individual utility function. Following Kahneman

and Tversky (1979), I decompose the function into the utility function on gains, u+(·),
and the utility function on losses, u−(·):

u(x) =

{
u+(x) x ≥ 0

u−(x) x < 0.
(9)

Subjects have to decide whether to stop or to continue the search every search step t.

The reference point at time t is the payoff that they get from stopping when they realize

the best price draw, mt, that they have in hand at time t. The utility from continuing

the search is evaluated relative to this reference point:

If subjects find a price lower [higher] than mt− c in the next round t+1, they make a net

gain [loss] relative to their current situation where they have mt in hand – see the term⊗
[
⊕

] in (10).

The model implicitly assumes that subjects solve the problem based on one-step forward-

induction. In the rp-model the expected gain at time t from searching once more before

stopping, G(mt), is given by

G(mt) =

∫ mt−c

−∞
u+(mt − x− c)dF (x)

︸ ︷︷ ︸⊗

+

∫ mt

mt−c

u−(mt − x− c)dF (x) + (1− F (mt)) · u−(−c)

︸ ︷︷ ︸⊕

. (10)

That is, the model assumes that people sequentially update their reference point in every

time step. Model (10) is stationary in the same sense as the forward optimal model
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(6): The search behaviour is independent of time t since subjects focus on the marginal

gain or loss of the next step but not on the total payoff from the search. Identical with

the prediction of the forward optimal search model (6), this model results in a constant

reservation price over time. As in the forward optimal search model, negligence of the

sunk costs incurred during the search process is here responsible for the stationarity of

the model.

I rewrite equation (10) for simplicity. For this purpose, define p(x,mt) as the rp-payoff-

function, i. e. the function that determines individual payoff (relative to the reference

point) in the framework of the rp-model (10), conditional on having the best offer mt in

hand at time t:

p(x,mt) =

{
mt − x− c x ≤ mt

−c x > mt

(11)

With the help of (11), the rp-model (10) is equivalently written as:

G(mt) =

∫ mt−c

−∞
u+(p(x,mt))dF (x) +

∫ ∞

mt−c

u−(p(x,mt))dF (x)

=

∫ ∞

−∞
u(p(x,mt))dF (x). (12)

Several studies (e.g. Kogut, 1990; Sonnemans, 1998) find that many subjects also focus

(to some extent) on total earnings from the search game, instead of only focusing on the

marginal return of another draw. This translates into a reservation price that does not

remain constant, but is falling when t increases, as predicted by the backward optimal

model (8).

In the framework of the rp-model, this means that subjects take into account that total

payoff is left-truncated at e0. In other words, if subjects focus on total earnings, they

take into account that when continuing the search they do not risk losing money if their

payoff at the current reference point is already e0. That is, the maximal loss that they

can incur is the search cost (if the payoff at the reference point is higher than the search

cost), or the payoff at the reference point (if the payoff at the reference point is less than

the search cost).

This idea, namely that subjects also focus on total earnings instead of only focusing on

the marginal return of another draw, is translated into the framework of the rp-model by

a modification of the rp-payoff-function.

For this purpose, I first define two functions q(·) and v(·):

q(y) =

{
q(y) = y y ≥ 0

0 y < 0
(13)

v(y) =

{
v(y) = y y ≥ −c

0 y < 0
(14)
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The modified rp-payoff-function p(x,mt, t) now has the following form.4

p(x,mt, t) =





q(100− c · t− x− c) mt ≥ 100− c · t
v(mt − x− c) mt < 100− c · t ∧ x ≤ mt

v(mt − (100− c · t)) mt < 100− c · t ∧ x > mt

(15)

With the modified version of the rp-payoff-function, the rp-model (12) is written as follows:

G(mt) =

∫ mt−c

−∞
u+(p(x,mt, t))dF (x) +

∫ ∞

mt−c

u−(p(x,mt, t))dF (x)

=

∫ ∞

−∞
u(p(x,mt, t))dF (x). (16)

I have now developed two search models, (16) and (10), that assume that subjects update

their reference points during the search process. Both rp-models are based on two inde-

pendent parts of the utility function, u+(·) and u−(·). The EU-based models presented in

the previous Subsection, however, are less flexible in the sense that they are based on only

one branch of the utility function, u+(·). In order to be able to compare the two modelling

approaches in the remainder of the paper, both models need the same number of degrees

of freedom in the preference parameters. I therefore assume the following one-parameter

form of the reference point utility function:5

u(x) =

{
u+(x) = x x ≥ 0

u−(x) = λ · x x < 0
(17)

Using this form of the utility function, the rp-model implicitly assumes that individu-

als are risk-neutral and that only the kink at the utility reference point plays a role for

observed search behaviour. The crucial parameter that determines individual search be-

haviour is now the individual loss aversion parameter λ. Assuming utility specification

(17), the stationary rp-model (10) implies a constant reservation price search rule; the

level of the reservation prices is a function of loss attitude λ.6

Assuming utility specification (17), the non-stationary rp-model (16) implies, in line with

the stationary rp-model (10), a reservation price path that varies systematically with the

loss aversion parameter λ: the higher loss aversion, the higher the reservation price. How-

ever, in contrast to the stationary rp-model, the reservation price starts falling after a

certain number of time-steps (see Figure 4).

The stopping rules derived from the reference point models (10) and (16) are equivalent

with two classical search models that are based on EU-maximisation:

4 A detailed derivation of the function p(x,mt, t) is given in the Appendix of the paper.
5 This form was proposed by Benartzi and Thaler (1995) and subsequently used in various experimental

studies that elicit individual loss aversion (see, e.g., Schmidt and Traub, 2002)
6 Algebraic transformations show that under (17) the rp-model (10) is identical to the classical risk-

neutral forward induction model (2) under the assumption that λ = 1.
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– The stationary rp-model (10) predicts the same search behaviour as the EU-based

forward optimal search model (equation (6)), and both models assume that subjects

ignore sunk costs.

– Similar to the EU-based model (8), the non-stationary rp-model (16) predicts that the

reservation price is first constant and starts falling after a certain number of time steps.

In both models, subjects do not ignore sunk costs.

While EU-based models and the rp-model predict very similar search behaviour, the ex-

planation for the search behaviour is different: In the rp-model, loss aversion explains the

level of the reservation price path, whereas in the EU-models, risk aversion explains this

level. The rp-model is built on the idea that “loss aversion [...] provides a direct expla-

nation for modest-scale risk aversion” (Rabin, 2000, p. 1288). We will see later that due

to the similar predictions of the two models, distinguishing between these two preference-

based explanations for search behaviour requires independent measures for individual

preferences. The following section describes how information on individual preferences

and on search behaviour was elicited.

3 Experimental Design

The experiment consisted of three parts (A, B, and C) that were presented to the subjects

in fixed alphabetical order. Parts A and C of the experiment served to elicit parameters

that characterize subjects’ preferences, and Part B consisted of a series of repeated price

search tasks used to elicit subjects’ search behaviour.

Note at this point that the decision in the price search task (Part B), namely whether

to stop, s, or to continue, c, the search, corresponds conceptually to the choice between

a sure payoff, s, and a lottery, c, with several consequences. To create similar decision

situations in both, the search task (Part B) and the preference elicitation parts (Part A

and C), the preference elicitation parts have been designed such that subjects are faced

with tasks that involve the comparison between a sure payoff, s, and a lottery, c.

The descriptions of the experimental design will begin with Part C, continue with Part

A, and end with Part B. This makes some details of the design clearer.

3.1 Part C: Risk Attitude

In part C, a certainty-equivalent method (e.g. Wakker and Deneffe, 1996) is used to elicit

individual risk attitude. That is, subjects are presented with a two-outcome lottery and a

sure payoff and asked to enter one missing value such that they are indifferent between the

sure payoff and the participation in the lottery. In total, only three lotteries are presented

to the subjects.
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Two values, xmin =e0 and xmax =e24, are defined. The subject is asked to enter a

sure payoff, the certainty equivalent s0.50, that is as attractive to her as the participation

in the lottery (xmin, p; xmax, (1 − p)).7 In the second question, the subject is asked to

enter the sure payoff s0.25 that is as attractive to her as the lottery (xmin, p; s0.5, (1− p)).

Finally, in the last question, the subject is asked to reveal indifference between the lottery

(s0.5, p; xmax, (1− p)) and a sure payoff by stating the sure payoff s0.75.

The values e0, es0.25, es0.5, es0.75 and e24 are equally spaced in terms of their utility,

which allows for the estimation of the individual utility function, thereby obtaining a risk

attitude index for each subject in the monetary domain between e0 and e24.8

3.2 Part A: Loss Attitude

Part A consists of two blocks, (A-1) and (A-2), that are presented in random order. In

block (A-1) subjects are again presented with a 50-50-gamble (x, 50%; y, 50%) and a sure

outcome s to the subjects. In all five presented lottery tasks the sure consequence s has

the value e0. One consequence of the two-outcome lottery has a value of x ∈ {e-1,e-

10,e-25,e-50,e-100}. The values are presented in random order. Subjects are asked to

enter the monetary value y of the other outcome of this 50-50-lottery such that the lottery

and the sure payoff of e0 are equally attractive to them (i.e. they have to adjust a mixed

prospect to acceptability).9

In block (A-2), subjects are presented with three pure certainty-equivalent lotteries of the

same type as in part C, but with xmin =e1 and xmax =e9.

3.3 Part B: Search Behaviour

In Part B subjects perform a sequence of search tasks. Each subject’s goal is to purchase a

certain good that she values at e100. The good is sold at infinitely many locations10, and

visiting a new location costs e1. On the instruction sheet, subjects are informed that the

integer price at each location is drawn independently from a uniform price distribution

with a lower bound of e75 and an upper bound of e150.

After each price draw, subjects can stop and choose any price encountered so far, or they

can continue their search at the incremental cost of another euro. The outcome of each

7 The value of p was set to 50% for all subjects, i. e. p = 1 − p. 50-50-lotteries are well-known to most
decision-makers through events such as throwing coins.

8 Note that the search task is designed such that subjects earn at least e0 and at most e24.
9 Please see the Appendix, Figure 6, for the graphical presentation of the lotteries.

10 In other words, participants are not prevented from searching as long as they want. It is not reasonable,
however, to search for more than 25 steps, because, given the payoff structure, every search task lasting
for more than 25 rounds ends with a zero payoff. No subject has searched for more than 25 steps.
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search task is calculated as the evaluation of the object (e100) minus the price at the

chosen location minus the accumulated search cost.

To ensure that subjects are experienced with the task and to minimise the impact of

learning, subjects are allowed to perform an unlimited number of practice search tasks

before performing a sequence of 15 tasks that determine their payoff for part B of the

experiment. Finally, after the experiment is completed, one of these 15 rounds is selected

randomly to determine the payoff.

The search-model question.

After the search task is finished, there is one additional lottery question (henceforth re-

ferred to as the search-model question), worded as follows:11

You have now dealt with lottery tasks and a price search task. Perhaps you have realized

that the decision in the search task (to stop or to continue the search) is similar to the

decision between the lotteries presented to you:

If you stop your search, you obtain a sure payoff, but if you decide to continue the search,

you essentially play a lottery with a risky outcome.

Which of the two lotteries, I or II, is most similar to the lottery that you play when you

continue the search from your point of view?

Lottery I: (eA, p%;eB, (100-p)%)

Lottery II: (eX, p%;e –Y, (100-p)%)

(A, B, X and Y denote arbitrary positive numbers, and p is a (percentage) number between

0 and 100).

This question is of importance: Search models that are based on expected-utility theory

(henceforth: EU-theory) assume that subjects evaluate the next search step as a pure

lottery (cf. lottery I). In contrast, the new rp-model assumes that subjects evaluate the

next search step as a mixed lottery (cf. lottery II). Therefore, the answer to the search

model question allows for subdivision of the subject sample into two categories: subjects

behaving in a manner consistent with an EU-based model and subjects behaving in a

manner consistent with a model in which subjects set reference points.

A few remarks on the experimental design: First, the purpose of including both, mixed

(A-1) and pure (A-2) lottery tasks, in the first part is to have subjects get used to both

tasks before they have to answer the search-model question. Second, to make sure that

subjects have sufficient experience with the search task and have been exposed to pure and

mixed lotteries, the search-model question is presented directly after they have performed

the search task. Third, since subjects are informed on the instruction sheet about the

11 The graphical presentation of the two lotteries I and II presented in the search-model question is
identical with the graphical presentation of all other lotteries. Furthermore, the two lotteries, I and
II, are presented in random order.
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properties of the search experiment (i.e. they are aware that their minimum payoff is e0

and that their maximum payoff is e24), the certainty-equivalent-method with the values

xmin =e0 and xmax =e24 is used after they have answered the search-model question (i.e.

in Part C). This avoids the potential influence of an exposure to lotteries with xmin =e0

and xmax =e24 on the answer to the search-model question.

3.4 Administration and Payoffs

The study was conducted in the Summer and Fall of 2004 in the experimental laboratory of

the SFB 504, a national research center at the University of Mannheim. In eight sessions

119 students of the University of Mannheim participated in the experiment on search

behaviour and preferences. All experiments were run entirely on computers using software

written by the author. With regards to the specific tasks, subjects were instructed that (i)

their payoff was truncated at e0 (i.e. subjects could not incur losses from the search task)

and that (ii) they would not earn a show-up fee (i.e. no reference point was induced).

Given this experimental design, the search models presented in this Section imply that any

systematic relationship between individual loss aversion and search behaviour that cannot

be explained by a correlation between loss aversion and risk aversion12 is evidence that

subjects set reference points during their search. Controlling for a relationship between

risk aversion and loss aversion, no relationship between loss aversion and search behaviour

is expected, if subjects behave according to EU-theory.

4 Inference about Preferences and Search Behaviour

This Section presents and discusses how risk and loss attitude is estimated from the data

obtained in the lottery tasks of the experiment. I also describe how individual search

behaviour is classified based on the data obtained in the search experiments and the

search models developed above.

4.1 Estimation of Risk Attitude

I estimate individual risk attitude based on a parametric approach allowing for a specifi-

cation of both constant relative and constant absolute risk aversion (CRRA and CARA,

respectively). For both functional forms, the utility function is estimated from the data

obtained in Part C using nonlinear least squares.

12 I test for that correlation in a later Section. Furthermore, the duration model (Section 5.3) is a test
of the relationship between preferences and search behaviour that controls for such a correlation.
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Utility functions of the power form (e.g. Tversky and Kahneman, 1992; Abdellaoui, 2000)

assume that subjects have constant relative risk aversion (CRRA):

u(x) = (
x− xG

min

xG
max − xG

min

)(α+1) (18)

xG
max is the largest elicited value of x in the gain domain, i.e. e24; xG

min is the smallest

elicited x-value on the gain domain, i.e. e0. The estimated coefficient α characterizes

each subject’s risk attitude under the CRRA-assumption. If α > 0, the subject is risk

seeking; if α < 0, the subject is risk averse.

Utility functions of the exponential form (e.g. Currim and Sarin, 1989; Pennings and

Smidts, 2000) assume that subjects have constant absolute risk aversion (CARA):

u(x) =
1− e−γ(x−xG

min)

1− e−γ(xG
max−xG

min)
(19)

For γ = 0 the function is defined to be linear, i.e. the subject is risk neutral. In the CARA-

specification, the estimated coefficient γ characterizes each subject’s risk attitude in the

sense of an Arrow-Pratt-measure of risk attitude (Pratt, 1964), that is: −u′′(x)/u′(x) = γ.

If γ < 0, the subject is risk seeking, if γ > 0, the subject is risk averse.

4.2 Estimation of Loss Attitude

Based on the subjects’ response in Part A of the experiment, an individual-specific index

for loss aversion is calculated. The statistic λx = −y/x is a measure for individual loss

aversion, where x ∈ {e-1,e-10,e-25,e-50,e-100} and y is the response to the lottery

given in part A. This method of eliciting a coefficient of loss aversion is similar to the

method in Tversky and Kahneman (1992).

4.3 Classification of Decision Rules Used in the Search Task

The next step in the analysis is to determine the decision rule used by each subject in

the search task. In order to do so, a fixed set of candidate decision rules is specified,

the “universe of search rules”, and the decision rule that fits observed behaviour best

is attributed to each subject. Since utility-based search models developed in Section 2

establish a relationship between preference parameters and decision rules, I can assign

preference parameters to the subjects based on the attributed search rules.13

The Universe of Search Rules

For the investigation of the relationship between individual preferences and search be-

haviour, I use as candidate decision rules all those search rules that can be derived from

13 I can attribute only small intervals of preference parameters and not exact point-values, since the
prices presented in the price search task are discrete.

12



the search models developed in Section 2. The universe of search rules (i.e. the set of can-

didate search rules that are used in this paper to characterize search behaviour) consists

of the following 51 rules:

The first class of these decision rules, henceforth referred to as type-1-rules, share the

constant reservation price property (see Figure 1). These rules are either based on the

assumption that subjects use the forward optimal search rule (equation (6)), an EU-

based model that neglects sunk costs, or the stationary rp-model (equation (10)), the

rp-model that neglects sunk costs. Each rule says that the subject uses a reservation

price r ∈ {e78, ..,e94} which is constant during the search round. There are 17 type-

1-rules denoted by t178, t179, ..., t194. Every rule corresponds to a certain risk attitude

parameter αsearch and γsearch.14

The second class of decision rules is based on the finite horizon search model (i.e. the

backward optimal search rules developed in Section 2). According to these type-2-rules,

the reservation price is a function of the search step t and of individual risk attitude.

There are again 17 different type-2-rules, denoted by t278, t279, ..., t294, derived based on

the assumption of a CRRA-specification of the utility function: For the first rule, the

reservation price at t = 1 is e78, for the second rule, it is e79,..., and for the last rule

it is e94 (see Figure 2). Each reservation price path corresponds to a certain α-interval.

The 17 price paths t278, t279, ..., t294 correspond to a decreasing sequence of 17 α-intervals

taken from the interval [−0.973, 25.20]. Alternatively, the 17 type-2-rules can be derived

based on the assumption of a CARA-specification of the utility function (see Figure 3).

Analogously, each reservation price path corresponds to a certain γ-interval, and the 17

paths correspond to an increasing sequence of γ-intervals taken from [−2.028, 0.837]. In

the paper, it will always be clear from the context whether the particular type-2-rules

are derived based on either a CRRA- or a CARA-specification of the utility function.

Conditional on the assumption that a certain subject uses a finite horizon search model,

risk coefficients αsearch and γsearch can be attributed to her. These coefficients are the risk

attitudes that explain best the observed search behaviour.

Finally, the type-3-rules are based on the non-stationary rp-model (16), the rp-model

developed under the assumption that subjects do focus on total payoffs from searching.

The reservation price is a function of the search step t and of individual loss aversion λ

(see Figure 4). Again, 17 different rules are considered, t378, t379, ..., t394: For the first

rule, the reservation price at t = 1 is e78, for the second rule, it is e79,..., and for the

last rule it is e94. The rules correspond to a decreasing sequence of λ-intervals taken

from the interval [0.042, 3.392]. Based on the type-3-rules, I attribute to every individual

a loss coefficient λsearch. The loss attitude coefficient assigned best explains the observed

14 Under risk neutrality, one finds a constant reservation price of e86. The set of 17 constant reservation
price rules, t178, t179, ..., t194, is sufficiently large to classify all observed behaviour (see Figure 5).
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search behaviour conditional on the assumption that the subject uses the non-stationary

rp-model.

Classification Procedure

To classify search behaviour, I determine for each subject the proportion of choices con-

sistent with each decision rule and then maximise this proportion over the set of all

candidate decision rules (i.e. a subject is assigned the decision rule that generates the

largest fraction of correct predictions). It is assumed that each subject follows exactly

one of the decision rules in the universe of candidate rules and that she uses the same

rule in each of the 15 pay-off tasks. This assumption seems reasonable in view of the fact

that all subjects are experienced when they begin the 15 pay-off relevant tasks.

Formally, the classification procedure is described as follows: Each search rule ci ∈ C,

where C is the universe of search rules described above, is a unique map from subject

i’s information set Sit to her continuation decision dit ∈ {0, 1} : dci
it (Sit) → {0, 1}. Now,

let d∗it denote the observed decision of subject i in period t. Then, define the indicator

function:

Xci
it (Sit) = 1(d∗it = dci

it (Sit)) (20)

Let Ti be the number of decisions that are observed for subject i. I attribute to each

subject the search rule that maximises the likelihood of being used by that subject:

ĉi = arg max
ci∈C

Ti∑
t=1

Xci
it (Sit) (21)

5 Results

This Section starts with self-contained descriptions of the results of the utility function

elicitation (Part A and Part C) and of the classification of the search behaviour (Part B).

The main part of this Section is the joint analysis of the results of individual preferences

and search behaviour based on the theoretical findings in Section 2.

5.1 Part C and A: Risk and Loss Attitude

Of the 119 subjects that participated in the experiment, thirteen were excluded.15 From

the data in Part C two indices of risk attitude, an index α (derived from a CRRA-

specification) and an index γ (derived from a CARA-specification), were estimated for

each subject. From the data obtained in part A, five indices of loss attitude, λ1, λ10, λ25,

15 In contrast to all other subjects, the utility functions derived from the answers of these 13 subjects
are not strictly monotone. This is evidence that they did not understand the lottery tasks correctly
or did not take it seriously.
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λ50, and λ100, were calculated for each subject.

Table 1 reports results of the nonlinear least squares estimation of the risk coefficients γ

and α, including the mean coefficient of determination R2 for those two estimations. The

coefficients of determination are close to 1 for all nonlinear regressions. The proportions

of different risk attitudes in the sample are independent of the functional form of the

utility function.

Table 2 shows the results of the loss aversion elicitation part of the experiment. Partici-

pants were predominantly loss averse in their choices. I find mean loss aversion coefficients

λx that are significantly higher than 1. As expected, there is a high and statistically sig-

nificant degree of correlation between the individual answers to the various loss aversion

questions (see Table 3). In fact, 39% of the subjects exhibited constant loss aversion, that

is, their loss aversion coefficient is identical for all loss aversion questions. For 83% of all

subjects, the hypothesis of constant loss aversion cannot be rejected based on fitting a

power-function on the data. This simply means that no significant relationship between

the level of the stimulus and the degree of loss aversion could be proven.16

5.2 Part B: Search Behaviour

Search behaviour differs considerably across individuals. I also find a preponderance of

early stoppers compared to behaviour under the risk neutral stopping rules. This confirms

results from earlier experimental studies (e.g. Hey, 1987; Sonnemans, 1998).

Considering (a) the universe of search rules (see Figures 1, 2, 3, and 4), (b) the rather low

average number of search steps, and (c) the fact that only a finite number of search rounds

per individual (namely 15 rounds) is observed, it is clear that based on the universe of

51 rules individual search rules are not (empirically) identified.17 In essence, and in line

with findings from Schunk and Winter (2004), the discrimination between very similar

reservation price rules, that is across search rule types (e.g. between t180, t280, and t380),

is hardly possible. It does not serve to identify the search models that subjects are

using.18 In contrast, the identification within a certain rule type is clear: For example,

there is significant difference in whether a subject’s behaviour is more consistent with,

for example, t180 rather than with t181. In other words, individual risk attitude or loss

16 Several empirical studies confirm the predominance of loss averse choices (e.g. Fishburn and Kochen-
berger, 1979; Tversky and Kahneman, 1992; Schmidt and Traub, 2002; Pennings and Smidts, 2003).
The studies are also in line with the experimental findings on constant loss aversion: Schmidt and
Traub (2002) cannot reject the hypothesis of constant loss aversion for 78% of their subjects. Note,
however, that the measurement of loss aversion is complicated by the fact that there is no agreed-
upon definition of loss aversion in the literature (for reviews of this topic, see Abdellaoui, Bleichrodt,
Parashiv (2004) and Koebberling and Wakker (2005)).

17 Asymptotically, that is if an infinite number of search rounds per individual is observed, individual
search rules are identified.

18 For more details, please see the Appendix, Section 8.3.
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attitude parameters can be attributed to the subjects based on their behaviour in the

search task.

5.3 Analysing Search Behaviour and Individual Preferences

As mentioned above, the observed search behaviour is not sufficient to identify “users”

of the reference point model. However, in order to discriminate between subjects that

use the rp-model and subjects that use one of the classical EU-based models, I can de-

rive hypotheses on the relationship between search behaviour and individual preferences

that are testable based on the information gained in Parts A, B, and C of the experi-

ment. Essentially, it is hypothesised that for subjects from PR, individual loss aversion

is systematically related to search behaviour, while for subjects from PC , risk aversion is

systematically related to search behaviour. Specific hypotheses are stated below:

Conditional on the assumption that a population PR of subjects uses the rp-model, the

rp-model predicts that:

(H1) The more loss averse – measured as λx in Part A – a subject from PR is, the fewer

search steps (denoted by ss) this subject should take in the search process.

(H2) For subjects from PR, the index of loss aversion, λx, elicited in Part A, should be

positively correlated with the index of loss aversion, λsearch, elicited in the search task,

Part B.

Conditional on the assumption that a population PC of subjects does not use the rp-

model, but one of the classical models (either the forward-optimal search model or the

backward optimal search model), it is claimed that:

(H3) The more risk-averse – measured as γ or α in the preference elicitation Part C – a

subject from PC is, the fewer steps ss this subject should take in the search process.

(H4) For subjects from PC , the indices of risk attitude γ and α elicited in the preference

elicitation Part C should be positively correlated with the particular indices of risk atti-

tude γsearch and αsearch, respectively, revealed through the search behaviour.

To subdivide the sample into PR and PC , I use the answers to the search-model question

(see Section 3.3): 39 subjects were categorised into group PR, 67 subjects were categorised

into group PC .

Descriptive statistics on individual preferences and search behaviour by subgroup are

reported in Table 4.

Descriptive Analysis

Before the above-mentioned hypotheses are investigated, it is helpful to compare the

descriptive statistics on preference estimates (see Table 1 and Table 2) with the theoretical

findings on the relationship between preference parameters and search behaviour (see

Section 4.3):
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Risk attitude (CRRA-specification): Table 1 shows that all estimates for α lie in the

interval [−0.457, 2.345]. From the developed search models follows that these estimates

correspond to reservation price paths that start between e83 (for α = 2.345) and e87

(for α = −0.457). That is, essentially only the following search rules are compatible with

the preference estimates: {tX83, .., tX87} for X ∈ {1, 2}.
Risk attitude (CARA-specification): Table 1 shows that all estimates for γ lie in the

interval [−0.153, 0.093]. These estimates correspond to reservation price paths that start

between e84 (for γ = −0.153) and e87 (for γ = 0.093). That is, only the following search

rules are relevant: {tX84, .., tX87} for X ∈ {1, 2}.
Loss attitude: The estimated λx-values lie in the interval [0.5, 20]. This corresponds to

reservation price paths that start between e83 (for λ = 0.5) and e94 (for λ = 20). The

following search rules apply: {tX83, .., tX94} for X = 3.

The first finding from this descriptive analysis is: The variance in the degree of curvature

of the utility function is not sufficient to explain the heterogeneity in the observed search

behaviour. As Figure 5 suggests, the complete universe of search rules is needed to describe

the search behaviour of all observed individuals.19 The second finding is that though the

estimated loss aversion coefficient is compatible with a wider range of different search

rules than estimated risk aversion, the variation in loss aversion is also not sufficient to

capture the observed heterogeneity in search behaviour.

Correlation Analysis

Table 5 reports the results of an investigation of the above mentioned hypotheses (H1)-

(H4), based on a rank correlation analysis between observed preference and search param-

eters. For the complete sample P , there are negative correlations of marginal significance

between most estimates for individual loss aversion and the number of search steps (ss);

this is consistent with (H1). In contrast, the estimates for individual risk attitude are not

correlated with the number of search steps.

For the subgroup PR, I find strong support for (H1): There are significant negative corre-

lations between all estimates for individual loss aversion and the number of search steps

(ss). Additionally, results from these analyses support (H2): The estimates for individ-

ual loss aversion derived from the lottery questions, λx, and the estimates derived from

the observed search behaviour, λsearch, are correlated at the 10%-level (λ1, λ10, and λ25),

and some at the 5%-level (λ50 and λ100). For PC , no significant correlations were found,

suggesting that none of the hypotheses (H3) and (H4) for this group are supported. The

hypotheses (H3) and (H4) are not supported by any of the considered subgroups either.

19 In fact, the lower and the upper boundaries of the universe of search rules, tX78 and tX94, have been
chosen based on the observed search behaviour. The universe consisting of {tX83, .., tX87} would not
be sufficient.
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Duration Analysis

A further analysis of the relationship between individual preferences and search duration

controls for a relationship between risk attitude and loss attitude parameters. As well,

it exploits the discrete time-to-event-nature and multiple-spell-nature. The event is the

stopping of the search, and the duration is measured discretely as the number of search

steps. Furthermore, 15 spells (= search rounds) per subject were observed. For one

specific search round, let T ≥ 1 denote the search duration that has some distribution in

the population. From the distribution function of T , I derive the hazard function h0(t)

for T , which gives the probability of stopping the search in the next time step, conditional

on not having stopped so far:

h0(t) = P (T = t | T ≥ t) (22)

Assuming that the subjects in the population use a constant reservation price rule, the

hazard function h0(t) is constant. That is, the stopping events are generated from a

process without memory and h0(t) = h0, leading to a geometric duration distribution.20

To account for the finite horizon nature of the search problem (i.e. subjects stop their

search in time step 25 if they have not been successful until then), a piecewise-constant

hazard function is used:

h0(t) =

{
h1 t < 25

h2 t = 25.
(23)

To investigate the hypotheses derived above, I test whether the hazard can be explained

by individual preference parameters. Therefore, two covariates X are chosen in the haz-

ard function: one covariate that characterizes risk attitude (γ or α) and one covariate

characterizing loss attitude (λ1, λ10, λ25, λ50 or λ100). The idea of a proportional hazard is

adopted (i.e. the conditional individual probability of stopping the search differs propor-

tionately based on a function of the covariates). For discrete time data, this leads to the

complementary log-logistic model (Clayton and Hills, 1993) and the discrete time hazard

can be written as:

hi(t, X) = 1− exp[−exp(β′Xi + δ1h1 + δ2h2)], (24)

where, i = 1,.., 106. β is a parameter vector, h1 and h2 characterize the baseline hazard.

Recall that every subject had to play 15 search rounds. All prices were drawn from a

uniform distribution, and all subjects observed the same series of price draws in each search

round. Therefore, I expect an unobserved effect for each search round, stemming from

the series of price draws that are different across rounds but identical across individuals.

To account for this unobserved heterogeneity, a random effect that is common to all

20 The structural assumption of a constant hazard can be supported based on our empirical findings
on the identifiability of different search rules and based on theoretical deliberations. Please see the
Appendix, Section 8.4, for a discussion of the constant hazard assumption.
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observations from a certain search round j (j = 1, .., 15) is included. The following model

is considered:

hi,j(t,X) = 1− exp[−exp(β′Xi + δ1h1 + δ2h2 + uj)] (25)

where uj is supposed to be normally distributed with mean zero.

Table 6 presents estimation results for the complete sample and for the subgroups. In

all estimations a likelihood ratio test suggests that the included random effect is highly

statistically significant. For the complete sample of subjects, P , (H1) is supported: An

increase in individual loss aversion is related to a significant decrease in individual search

time. This effect is significant at the 5%-level for λ10, λ25, and λ50, it is marginally

significant for λ1, regardless of the specification of the risk attitude coefficient (α or γ).

Risk attitude has no significant explanatory power for the search duration.

Considering the subsample PR even stronger support for (H1) is found: Apart from λ100,

all estimates for individual loss aversion have explanatory power for search duration at

least at the 2%-significance level. Individual risk attitude is always insignificant.

In the subgroup PC , no preference parameter has significant explanatory power.21

There is considerable heterogeneity in subject’s search behaviour. According to the anal-

yses presented above, the estimated loss aversion coefficient has significant explanatory

power for individual search behaviour, whereas risk attitude generally has no significant

explanatory power, regardless of whether CARA- or CRRA-specifications of the utility

function are considered. The findings on the explanatory power of loss aversion do not

hold for the subgroup PC , but they are very strong for the subgroup PR. The results

suggest that some subjects, in particular those from subgroup PR, set reference points

during their search in a way captured by the rp-model. Other subjects, in particular those

from the subgroup PC , might not set reference points during their search but solve the

search task based on some other heuristic.

6 Discussion

This paper focuses on the development and experimental testing of various search models,

in particular the reference point model. The results suggest that the rp-model is virtually

identical with EU-based models in its predictions about reservation price paths, but it

is considerably better than EU-based models in reconciling the experimental data on

individual preferences with the data on individual search behaviour. Complemented with

empirical information on individual preferences (e.g. the empirical distribution of loss

21 The robustness of the results from the duration analysis has been checked. All results are very robust.
Please see the Appendix, Section 8.4, for a brief discussion of different specifications of the duration
model.
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aversion in a population, see, e.g. Tversky and Kahneman, 1992; Pennings and Smidts,

2003), the rp-model is consistent with existing empirical findings on search behaviour,

such as the large heterogeneity of search rules and the predominance of early-stopping in

the population (Hey, 1987; Cox and Oaxaca, 1989; Sonnemans, 1998).

To further investigate individual heterogeneity, I hypothesise that at least a specific sub-

group, PR, of the subjects uses the proposed rp-model. Since identification of this sub-

group merely based on the observed search behaviour of subjects is in practice not pos-

sible, the subgroup PR is identified with the help of the search-model question. Under

the assumption that subjects understand this question correctly and that they are able

to relate this question to their actual search behaviour, the question is likely to be a

good instrument for dividing the complete sample into the particular subgroups PR and

PC . The main empirical result of this paper – namely that individual loss aversion is

systematically related to search behaviour, whereas risk aversion is not related to search

behaviour – is independent of this search-model question. Nevertheless, all further results

concerning the subgroup differences in search behaviour are built on the assumption of

the validity of this question.

The presented experimental setup is based on one specific search environment, which is

characterized by the known price distribution, the search cost and the ability to recall.

It is conceivable that subjects behave differently in a different search environment (e.g.

in an environment where the price distribution is not known). In particular, the effect of

loss aversion on search behaviour might become more or less pronounced if higher losses

(i.e. higher search cost) are involved. In the context of a search environment with a

considerably longer time between the search steps, the observed effect of loss aversion

might rather be called an endowment effect (Kahneman, Knetsch and Thaler, 1991; Huck

et al., 2005): If a person holds an object that she may keep for sure, the next step in the

search is evaluated only relative to this endowment.

A further issue to be addressed is the recall option of the search task. To my knowledge,

no search model or rule that explicitly predicts the recall option has been investigated in

the literature so far; the rp-model is not able to predict recall decisions either. Indeed,

2.4% of all stop-or-go decisions in the sample are decisions to stop and recall a price that

has been rejected.

In sum, the analyses lend support to the claim that subjects use different strategies when

“solving” the search task. In line with findings in Schunk and Winter (2004)22 I do not

find evidence supporting the classical EU-based search models in the sample. Controlling

for the effect of risk attitude, I do obtain support for the hypothesis that loss aversion is

related to search behaviour, implying that people set reference points in the course of their

22 The experimental design in Schunk and Winter (2004) differs from the design presented in this paper.
They use an adaptive method to elicit utility functions, and they present a different search task to the
subjects.
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search. It is important to note that no direct empirical support for the specific reference

point updating assumption that underlies the presented form of the reference point model

can be found. The observed relationship between loss aversion and search behaviour is

also consistent with subjects that set one constant utility reference point higher than

e0 and evaluate the outcomes during the search relative to this reference point. This

explanation cannot be rejected by the experimental data, but from a behavioural point

of view there is no argument that would favor this model over the reference point model

that is developed in this paper.

7 Conclusions

Subjects are heterogeneous with respect to their sequential decision behaviour. Based on

data obtained in a controlled laboratory experiment, I have shown that to some extent,

this heterogeneity can be linked to heterogeneity in individual preferences.

For the entire participant sample, loss aversion was shown to be systematically related

to search behaviour, while risk attitude was not related to search behaviour. Given the

experimental design, these findings suggest that people set reference points during their

search relative to which they evaluate potential future outcomes. The proposed reference

point search model describes overall observed behaviour better than search models de-

rived from expected-utility theory.

To further investigate heterogeneity in search behaviour, an instrument was used to sub-

divide the sample into two subgroups. It is found that for the subjects from one sub-

group, PC , there was no relationship between individual preferences and search behaviour.

However, for the other subgroup, PR, individual preferences and search behaviour were

strongly related in a way that is consistent with the predictions of the reference point

model.

At least for subjects from the PR subgroup, more than a third of the sample, observed

search behaviour can be explained significantly better by a search model that assumes se-

quential updating of utility reference points during search, rather than by a model derived

from the assumption of expected-utility maximising behaviour. This means, in addition

to heterogeneity in the estimated individual preferences, there might also be heterogeneity

in the way people solve the search task: Some people set reference points in sequential

decision tasks, while others do not. The two subgroups of the sample use different models

for solving the search task, and with the help of an instrument to separate these two

subgroups, individual search behaviour is to a certain degree predictable, provided that

information on individual preferences, specifically on loss aversion, is available.

The finding that people set reference points in sequential decision tasks is of interest for

recent theoretical and applied research in many fields, e.g. marketing science (Zwick et
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al., 2003), labour economics (Eckstein and Van den Bergh, 2005), and finance (Gneezy,

2003).
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8 Appendix

8.1 Graphical Presentation of the Lotteries on the Computer Screen

See figure 6.
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8.2 On the Function p(x,mt, t) in the RP-Model

The form of the rp-payoff-function p(x,mt, t) becomes clear under a rigorous case differ-

entiation with respect to possible price draws. q(·) and v(·) are defined as in Section 2.3,

i.e.

q(y) =

{
q(y) = y y ≥ 0

0 y < 0
(26)

v(y) =

{
v(y) = y y ≥ −c

0 y < 0
(27)

The following cases are possible:

Case 1

The price draw is better than the best price in hand minus the search cost: x < mt − c

• mt ≥ 100− c · t
⇒ p(x,mt, t) = 100− c · t− x− c = q(100− c · t− x− c)

• mt < 100− c · t
⇒ p(x,mt, t) = mt − x− c = v(mt − x− c)

Case 2

The price draw is worse than the best price in hand minus the search cost: x ≥ mt − c

• mt ≥ 100− c · t
⇒ p(x,mt, t) = 0 = q(100− c · t− x− c)

• mt < 100− c · t

• mt − c ≤ x ≤ mt

⇒ p(x,mt, t) = mt − x− c = v(mt − x− c)

• mt < x

• mt ≤ 100− c · t− c

⇒ p(x,mt, t) = −c = v(mt − (100− c · t))

• mt > 100− c · t− c

⇒ p(x,mt, t) = mt − (100− c · t) = v(mt − (100− c · t))
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8.3 Details on Search Behaviour

Descriptive Findings

In total, 8532 stop-or-go-decisions were observed in the experiment. The mean number of

search steps for all 15 search rounds was 80.5, with a minimum of 49 steps, a maximum

of 135 steps and a standard deviation of 18.1 steps. The mean number of search steps

per search round was 5.4, with a minimum of 1, a maximum of 25 and with a standard

deviation of 3.4 steps. The mean number of search steps was significantly lower than the

expected number of search rounds under the assumption of risk-neutrality: The expected

number of search rounds for an individual that uses the forward optimal search rule

(i.e. a constant reservation price of e86) was 6.3 steps. Under a CARA-finite horizon

model, expect 7.4 steps were expected and under the non-stationary rp-model 7.0 steps

were expected. Figure 5 shows the distribution of constant reservation price rules in the

sample, conditional on the assumption that all subjects use such a rule.

Classification of Search Behaviour

This brief Section presents some results of the procedure to classify search behaviour:

If the universe of search rules is limited to the 17 type-1-rules – the constant reservation

price rules – 92.8% of all observed stop-or-go-decisions can be explained. When limited

to the type-2-rules 93.0% are explained under the CARA-specification and 92.7% under

the CRRA-specification. Finally, the type-3-rules explain 92.8% of all decisions. Under

the CARA-specification, all 3 decision rules (type 1, type 2 and type 3) explain observed

behaviour equally well for 83 (78%) of the subjects (i.e. I cannot discriminate between the

3 rule types for 83 subjects). Under the CRRA-specification, all 3 decision rules (type 1,

type 2, and type 3) explain observed behaviour equally well for 89 (84%) of the subjects.

In this context, it is important to note that the main purpose of the classification method

is not to determine a minimal universe of decision rules that best describes the behaviour

of all subjects in the sample but to estimate the preference parameters that best describe

observed search behaviour. Therefore, the encountered problems of over-fitting, reflected

in the lack of discrimination between different search rules, are not a problem for the

analysis presented in this paper. In that, the presented method is akin to estimating

other preference parameters from experimental data.23

The findings presented here have again made clear that it is impossible to attribute search

models to the subjects merely based on their revealed search behaviour; i.e. discrimina-

tion across search rule types is infeasible. Since I can clearly discriminate within a certain

rule-type – i.e. I can discriminate between, e.g. rule t1p and rule t1q (for p, q ∈ {78, .., 94})
– I am able to attribute preference parameters (risk or loss attitude, depending on the

23 Schunk and Winter (2004) use the same classification procedure. More sophisticated statistical meth-
ods for the joint determination of the universe of decision rules and the classification of decision rules
that allow for errors are used by Houser and Winter (2004) and Houser et al. (2004).

25



search model) to the subjects.

8.4 On the Duration Analysis

The Assumption of a Constant Hazard

The main motivation for the constant hazard assumption is the finding in Section 5.2

and further detailed in the Appendix (Section 8.3) that a discrimination between the

different search-rule-types is hardly possible, since all search rules have a similar rate

of consistency with the observed search behaviour. It follows that the assumption of a

constant reservation price, that is a type-1-rule, is generally a good proxy for the observed

search behaviour. A constant reservation price, in turn, implies a constant hazard in the

duration model, as the reservation price path is interpreted as a hazard function in a

structural duration model approach.

A glance at Figures 1, 2, 3, and 4 reveals that all of the rules in the universe of search rules

consist of an initial part that has a constant reservation price. What rule is least consistent

with the assumption of a constant reservation price that is used for the duration analysis?

The worst case in terms of consistency with the constant reservation price assumption is

that a subject is very risk averse and uses a CARA-finite horizon rule: It can be seen in

Figure 3 that in this case the individual has a reservation price of e94 at t = 1 and t = 2,

and the price starts falling already from t = 3 on. The probability that this individual

does not search for more than two steps is 1 − (1 − 20
76

)2 = 45.7%, that is, even in this

“worst case”, the constant hazard assumption is correct in 45.7% of all cases.

Since a certain reservation price path in Figure 1, 2, 3, or 4 can be interpreted as the

hazard function of the particular individual that is using the corresponding search rule,

a modelling approach that is nonparametric concerning the individual hazard function

would effectively require the identification of reservation price paths. This is practically

impossible without further restrictions on the hazard function, given the identification

problems encountered in Section 4.3, which stem from the low number of observations

per subject.

Robustness

Various alternative specifications for the duration model have been considered:

(a) It is tempting to include a random effect for each subject instead of including an

effect for each search round. In this specification the unobserved effect term is highly

insignificant. However, all results presented in this paper also hold in this specification,

although in some cases they are statistically weaker.

(b) If the unobserved effect is left out from the estimated model, results are obtained

that are virtually identical with results that are obtained based on the random effect

specification for each subject (see specification (a) above).
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(c) The hazard h1 is highly significant in all estimations, but the drop-out term h2 for

time-step 25 is in general not significant, suggesting a specification without h2 (i.e. a

constant hazard instead of a piecewise constant hazard). All results are very similar to

those reported in the paper; the effect of the loss aversion coefficient on search duration

is even stronger than in the results reported in the paper.

In sum, the findings from alternative specifications all support the conclusions that are

drawn in this paper.
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FIGURE 1 
Constant reservation price path (type-1-rules) for different risk attitudes in CARA or CRRA-
specifications of a utility function. The more risk averse a searcher is, the higher her 
reservation price level. 
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FIGURE 2 
Reservation price path for type-2-rules for different risk attitudes. CRRA-specification of the 
utility function. The more risk averse a searcher is, the higher her reservation price level. 
 
 
 

Finite Horizon Model CRRA (Type-2-Rules)

75

77

79

81

83

85

87

89

91

93

95

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Search Step

R
es

er
va

tio
n 

Pr
ic

e

  



FIGURE 3 
Reservation price path for type-2-rules and different risk attitudes. CARA-specification of the 
utility function. The more risk averse a searcher is, the higher her reservation price level. 
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FIGURE 4 
Reservation price path for type-3-rules: Nonstationary reference-point model under risk-
neutrality. The more loss averse a searcher is, the higher her reservation price level. 
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FIGURE 5 
Imposing a constant reservation price rule on every subject, we obtain the following 
distribution of constant reservation price rules in the sample. The lowest observed reservation 
price is €78, the highest reservation price is €94. 
 
 

Distribution of Constant Reservation Price Rules

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

Constant Reservation Price

R
el

. F
re

qu
en

cy

 



FIGURE 6 
Graphical presentation of the lotteries on the computer screen. 
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TABLE 1 
Estimation results of CRRA and CARA utility function specification and classification of 
subjects according to their risk attitude 
 
 
 
 Functional Specification 
 CRRA (α) CARA (γ) 
Minimum coeff. estimate -0.457 -0.153
Maximum coeff. estimate 2.345 0.093
Mean R² of all estimations 0.998 0.998
Proportion Risk Averse 37% 37%
Proportion Risk Neutral 37% 37%
Proportion Risk Seeking 26% 26%
 



TABLE 2 
Results of the loss aversion lottery questions. 
 
 x-values 
 100 50 25 10 1 
Minimum λ 1 .9 .96 .9 .5 
Maximum λ 10 16 20 20 20 
Mean λ 2.39 2.39 2.4 2.53 2.56 
Median λ 1.68 1.6 1.6 1.85 1.5 
Loss Averse 69% 69% 69% 70% 71% 
Loss Neutral 30% 30% 30% 30% 28% 
Loss Seeking 1% 1% 1% 0% 1% 
 



TABLE 3 
Pearson correlation between the different elicited loss aversion coefficients (all correlations 
are statistically significant at the 1%-level). 
 

100 50 25 10 1
100 1.00
50 0.88 1.00
25 0.82 0.95 1.00
10 0.80 0.94 0.96 1.00
1 0.66 0.73 0.72 0.74 1.00

x-
va

lu
es

x-values

 



TABLE 4 
Descriptive statistics for the complete sample and the subgroups PR and PC. 
 
 

Complete Sample PR PC 
Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. 

λ1 2.56 2.57 2.29 1.72 2.72 2.96
λ10 2.53 2.63 2.19 1.41 2.74 3.12
λ25 2.40 2.38 1.88 1.02 2.69 2.86
λ50 2.39 2.27 1.98 1.21 2.63 2.68
λ100 2.39 2.10 2.06 1.84 2.59 2.23
α 0.03 0.38 -0.03 0.26 0.07 0.44
γ 0.00 0.04 0.01 0.03 0.00 0.04
Search Steps(ss) 80.49 18.05 81.79 18.99 79.73 17.57
 



TABLE 5 
Spearman Correlations between preference and search parameters 
 
 
TABLE 5a  -- P (106 subjects) 
 
  Search steps (ss) λsearch γsearch αsearch 
  ρ p-value ρ p-value ρ p-value ρ p-value 
λ1 -0.10 0.29 0.04 0.65
λ10 -0.17 0.08 0.11 0.28
λ25 -0.17 0.08 0.08 0.39
λ50 -0.16 0.10 0.10 0.29
λ100 -0.16 0.10 0.11 0.28

   
  
  
 

  
  
  
  
 

  
α 0.02 0.87   0.03 0.78
γ -0.01 0.88   0.06 0.63
 
 
TABLE 5b  -- PR (39 subjects) 
 
  Search steps (ss) λsearch γsearch αsearch 
  ρ p-value ρ p-value ρ p-value ρ p-value 
λ1 -0.32 0.05 0.28 0.09
λ10 -0.40 0.01 0.30 0.06
λ25 -0.40 0.01 0.32 0.05
λ50 -0.38 0.02 0.32 0.05
λ100 -0.41 0.01 0.33 0.04

  

α -0.10 0.56   0.00 1.00
γ 0.10 0.56  0.00 0.99  
 
 
TABLE 5c  -- PC (67 subjects) 
 
  Search steps (ss) λsearch γsearch αsearch 
  ρ p-value ρ p-value ρ p-value ρ p-value 
λ1 0.03 0.80 -0.09 0.48
λ10 -0.03 0.82 -0.01 0.95
λ25 -0.04 0.77 -0.04 0.75
λ50 -0.03 0.83 -0.01 0.91
λ100 -0.02 0.89 -0.016 0.90

  

α 0.07 0.55   0.03 0.81
γ -0.07 0.57  -0.00 1.00  
 



TABLE 6 
Duration analysis. Estimation results for various preference specifications and samples. We 
use two covariates in each duration regression: One covariate for loss attitude (λ1/ λ10/ λ25/ λ50, 
or λ100) and one covariate for risk attitude (α or γ) That is, for each sample considered, we 
present 10 duration regressions.  
 
 
 
TABLE 6a -- P (106 subjects) 
 
Regressor Coefficient p-value  Regressor Coefficient p-value 
             
λ1 0.02 0.07  λ1 0.02 0.07 
α 0.02 0.73  γ -0.59 0.34 

   
λ10 0.02 0.04  λ10 0.02 0.03 
α 0.04 0.57  γ -0.76 0.23 

   
λ25 0.02 0.03  λ25 0.02 0.02 
α 0.02 0.75  γ -0.69 0.28 

   
λ50 0.02 0.04  λ50 0.03 0.02 
α 0.02 0.77  γ -0.68 0.28 
     
λ100 0.02 0.12  λ100 0.02 0.11 
α 0.02 0.74  γ -0.58 0.35 
 
 
 
 
TABLE 6b -- PR (39 subjects) 
 
Regressor Coefficient p-value  Regressor Coefficient p-value 
             
λ1 0.07 0.01  λ1 0.07 0.01 
α 0.17 0.28  γ -1.67 0.15 

   
λ10 0.09 0.00  λ10 0.09 0.00 
α 0.18 0.26  γ -1.80 0.12 

   
λ25 0.14 0.00  λ25 0.14 0.00 
α 0.20 0.21  γ -1.91 0.11 

   
λ50 0.09 0.01  λ50 0.09 0.01 
α 0.15 0.35  γ -1.61 0.16 
     
λ100 0.04 0.09  λ100 0.04 0.08 
α 0.18 0.26  γ -1.72 0.14 
 
 

CARACRRA



 
TABLE 6c -- PC (67 subjects) 
 
Regressor Coefficient p-value  Regressor Coefficient p-value 
             
λ1 0.02 0.17  λ1 0.02 0.18 
α -0.02 0.83  γ 0.11 0.89 

  
λ10 0.02 0.17  λ10 0.02 0.18 
α 0.00 1.00  γ -0.09 0.91 

  
λ25 0.02 0.09  λ25 0.02 0.10 
α -0.01 0.94  γ -0.04 0.96 

  
λ50 0.02 0.08  λ50 0.02 0.08 
α -0.01 0.94  γ -0.06 0.94 

  
λ100 0.03 0.12  λ100 0.03 0.13 
α -0.01 0.86  γ 0.10 0.90 
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