
Evaluation Aspects of an

Object-oriented Deductive Database

Language

Georg Lausen and Beate Marx

Fakult�at f�ur Mathematik und Informatik

Universit�at Mannheim, W-6800 Mannheim, Germany

e-mail: flausen, marxg@pi3.informatik.uni-mannheim.dbp.de

Abstract

Recently, F-logic [KL89, KLW92] has been proposed as an attempt
to extend deductive databases by typical concepts of object-oriented
languages. Among these concepts are complex objects, (term-based)
object identity, methods, classes, typing, inheritance and browsing. In
[KLW92] syntax and model-theoretic semantics is discussed; however
many algorithmic aspects which arise when computing the correspond-
ing models are left open. In this paper we start to bridge this gap.
Several topics in the context of the evaluation of programs are dis-
cussed in detail; among these are weak recursion, global strati�cation
and dynamic type-checking.

1 Introduction

Over the past few years object-oriented database systems have been receiving
a lot of attention from both experimental and theoretical views. Since pure
object oriented systems su�er from a lack of formal semantics which tradi-
tionally was considered to be important for database languages, there have
been several attempts to combine object orientation and deductive databases
(e.g. [AK89, KW89, KL89, KLW92, CW89, Mai86, HY90, AG87, BNST87]).

1

In this paper we continue the research direction started by Maiers O-logic
[Mai86] and later extended by O-logic [KW89], C-logic [CW89] and F-logic
[KL89, KLW92]. Among these approaches F-logic is the most elaborated one.
In contrast to [AK89, HY90, AG87, BNST87] F-logic is a logic with function
symbols. This allows a
exible syntax which naturally supports the creation
of new objects, the de�nition of user-de�ned data-types, the parametrization
of classes, etc. As a distinctive feature, F-logic has a higher-order syntax with
�rst-order semantics; querying and browsing of the database is integrated into
the same language.

In [KLW92] syntax and model-theoretic semantics is discussed; however
many algorithmic aspects which arise when computing the corresponding
models are left open. In this paper we start to bridge this gap. We show how
the de�nition of class-hierarchies, typing and monotonic inheritance may
be incorporated into a bottom-up evaluation strategy. As F-logic allows
function-symbols, even for safe programs in�nite relations may be derived, if
the program is recursive. Therefore, in addition to safety, programs must be
weakly recursive. In case recursion involves functional methods in a certain
way, we can show that previously introduced de�nitions for weak recursion
can be weakened. We introduce a uni�cation-based test for global strati�ca-
tion and discuss various concepts to achieve type correctness.

The structure of the paper is as follows: Section 2 gives a short overview
of syntax and semantics of F-logic, Section 3 deals with the evaluation of pro-
grams and Section 4 discusses aspects of type checking; Section 5 concludes
the paper.

2 Syntax and Semantics

In the following two subsections we introduce syntax and semantics of F-
logic [KLW92]. Here we can simplify the presentation, because we are only
interested in rule-programs under Herbrand-semantics. Further, we restrict
our discussion to monotonic inheritance: the non-monotonic case is discussed
in [LU]. We assume some familiarity with �rst-order predicate logic and with
Datalogneg programs with function symbols (e.g., see [Llo87, Ull88]).

2

2.1 Syntax

The alphabet of an F-logic language L consists of (1) a set of object construc-
tors F , (2) a set } of predicate symbols, (3) an in�nite set of variables V and
(4) usual logical connectives and quanti�ers ^;_;8;9;:; etc. [KLW92].
Object constructors are function symbols. Each function symbol has an ar-
ity; symbols of arity 0 play the role of constant symbols, symbols of arity �
1 are used to construct new objects from simpler ones. An id-term is a term
composed of function symbols and variables in the usual way. The set of
all ground id-terms is denoted by F�. Conceptually, ground id-terms should
be perceived as object-denotations. While id-terms correspond to terms in
�rst-order predicate logic, F-terms and P-terms (as introduced below) are
the atomic formulae. In contrast to [KLW92], we do not introduce molecular
terms. Every F-logic object (represented by an id-term) can be viewed as
an entity or a relationship, a class or a method, depending on the syntactic
position in a formula. In its role as a method, an object can either be single
valued (also called functional) or set-valued . The way it has to be considered
is determined by the context. In the sequel we will use names starting with
lower-case letters to denote ground terms, and names starting with capital
letters to denote terms that may be non-ground.

An F-term is one of the following:

- An is-a F-term, P : Q, where P and Q are id-terms; is-a terms are used to
de�ne class hierarchies and class extensions. P represents an object,
resp. a (sub-)class, Q represents a (super-)class.

- A data F-term,
P [FunM @Q1; . . . ; Qk ! T] de�ning a functional method FunM , or
P [SetM @Q1; . . . ; Qk !! fS1; . . . ; Smg] de�ning a set-valued method
SetM on object P . T and the Si represent the results returned by
the respective methods FunM and SetM when invoked in the context
of the object P on the arguments Q1; . . . ; Qk. P , FunM and SetM ,
Q1; . . . ; Qk, S1; . . . ; Sm and T are id-terms.

- A signature F-term,
P [FunM @Q1; . . . ; Qk) fA1; . . . ; Ang], or P [SetM @Q1; . . . ; Qk))
fB1; . . . ; Bmg]. The Ai and Bj represent classes which are the types of
the results returned by the respective methods FunM and SetM , when

3

invoked in the context of an object of class P on arguments in classes
Q1; . . . ; Qk. Here classes again are used as types. P , FunM and SetM ,
Q1; . . . ; Qk, A1; . . . ; An, and B1; . . . ; Bm are id-terms.

The following example illustrates these constructs. The �rst term de�nes a
signature and states that children is a set-valued method that is applicable to
objects belonging to class person resulting in a set of objects also belonging
to class person. The second term respectively de�nes a signature for the
method age. The third term states that john belongs to class person and the
fourth and �fth term de�ne actual values as results of methods children and
age for the object john.

person[children)) fpersong]

person[age) fintegerg]

john : person (1)

john[children!! fsally; bobg]

john[age! 24]

Intuitively, a data F-term is a statement about an object asserting that it
has properties speci�ed by methods. A signature F-term speci�es typing
constraints on objects in the respective class. As types we allow standard
classes, as integer, string, etc., and user-de�ned classes which may be de�ned
by certain rules.

In addition to terms predicates are part of the language. If p 2 } is an
n-ary predicate symbol and T1; . . . ; Tn are id-terms, then p(T1; . . . ; Tn) is a
predicate term (abbrev. P-term). Equality of objects is expressed with the
in�x predicate

:
=, e.g., john

:
=father(sally). The interpretation of the equality

predicate is �xed in the usual way [CL73].
An F-rule is a clause

H B1 ^ . . . ^Bk ^ Bk+1 ^ . . . ^Bk+l;

where H and the Bi; i = 1; . . . ; k + l are F-terms or P-terms; H is called
the head of the rule and B1 . . .Bk+l the body. B1; . . . ; Bk are not negated,
Bk+1 . . . Bk+l are negated terms; if l = 0 a rule is called Horn. A rule with an
empty body is called a fact . An F-logic program is a �nite set of (implicitly)
8-quanti�ed F-rules; in our simpli�ed setting the equality-predicate is not
allowed to occur in the head of a rule.

4

2.2 Semantics

For an F-logic language L, its semantic structure, I, is a tuple hU;�U ,
IF ; I}; I!; I!!; I); I))i. Here U is the domain of the interpretation and �U

is a partial order on U . IF interprets k-ary object constructors, i.e., the ele-
ments of F , as functions from Uk to U . Predicate symbols are interpreted by
I} as relations on U of the appropriate arities. Methods are interpreted by
I!; I!!; I); I)) as mappings from U to partial functions from U l+1 to U , where
l is the arity of the corresponding method. Semantic aspects of methods are
expressed by special properties of these partial functions. For a detailed de-
scription see [KLW92]; for the topics of this paper Herbrand semantics is
su�cient which is introduced below.

A variable assignment , �, is a mapping from the set of variables, V, to
the domain of U . Let I be a semantic structure and � a variable assignment.
Intuitively, an F-term T is true under a semantic structure I with respect to
variable assignment �, denoted I j=� T , if and only if I contains an object
�(T) with properties speci�ed in �(T). We introduce the notion of truth
with respect to Herbrand interpretations.

2.2.1 Herbrand Interpretations

Given an F-Logic language L with F as its set of function symbols and }
as its set of predicate symbols, its Herbrand universe is F� - the set of all
ground id-terms. The Herbrand Base, HB, is the set of all ground atoms
of the F-terms, equality and P-terms. Atoms are de�ned as follows. Every
is-a F-term and data F-term of a functional method is also an atom. A
data F-term of a set-valued method is an atom if it is either of the form
P [SetM @Q1; . . . ; Qk !! fSg], or P [SetM @Q1; . . . ; Qk !! fg]. The atoms
of a set-valued F-term are those which can be derived from it, i.e., their
result is a subset of the result of the given F-term. Signature terms are
treated analogously.

Herbrand interpretations are subsets of the Herbrand base; truth in Her-
brand interpretations is de�ned as follows:

- A ground term (an F-term or a P-term) t is true in an Herbrand interpre-
tation H, if for all atoms t0 of t it holds t0 2 H,

- A ground negative term :t is true in H, if for at least one atom t0 of t it
holds t0 =2 H,

5

- A rule r = A B1 ^ . . . ^ Bk+l is true in H, if for all ground instances
r� of r, � a variable assignment, either A� is true in H or at least one
of the Bi� is not true in H.

Now, let H be a subset of HB. Then H is an F-Herbrand interpretation
of L if it satis�es the equality axioms [CL73] w.r.t.

:
= and in addition the

following closure properties that re
ect the properties of a semantic structure
(cf. [KLW92]):

- ISA:
ISA re
exivity: p : p 2 H;
ISA transitivity: If p : q; q : r 2 H, then p : r 2 H;
ISA acyclicity: If p : q; q : p 2 H, then p

:
= q 2 H.

- Signature:
Type inheritance:
If p[funM @ q1; . . . ; qk) fsg], r : p 2 H,then

r[funM @ q1; . . . ; qk) fsg] 2 H;
If p[setM @ q1; . . . ; qk)) fsg], r : p 2 H,then

r[setM @ q1; . . . ; qk)) fsg] 2 H.
Argument subtyping:
If p[funM @ q1; . . . ; qi; . . . ; qk) fsg]; q0i : qi 2 H then

p[funM @ q1; . . . ; q0i; . . . ; qk) fsg] 2 H;
If p[setM @ q1; . . . ; qi; . . . ; qk)) fsg]; q0i : qi 2 H then

p[setM @ q1; . . . ; q0i; . . . ; qk)) fsg] 2 H.
Range supertyping:
If p[funM @ q1; . . . ; qk) frg], r : s 2 H then

p[funM @ q1; . . . ; qk) fsg] 2 H;
If p[setM @ q1; . . . ; qk)) frg], r : s 2 H then

p[setM @ q1; . . . ; qk)) fsg] 2 H.

- Data F-terms:
functionality:
If p[funM @ q1; . . . ; qk ! r1]; p[funM @ q1; . . . ; qk ! r2] 2 H, then

r1
:
= r2 2 H.

- Id-terms:
For every id-term t; t[] 2 H.

6

The notion of type correctness in F-logic is as follows. A program P is
well-typed with respect to a Herbrand interpretation H, if, in addition, the
following properties hold:

Signature:
Well-typing:
If p[funM @ q1; . . . ; qk ! q]; p[funM @ q1; . . . ; qk) frg] 2 H then

q : r 2 H;
if p[setM @ q1; . . . ; qk !! fqg]; p[setM @ q1; . . . ; qk)) frg] 2 H then

q : r 2 H;
if p[funM @ q1; . . . ; qk ! q] 2 H then p[funM @ q1; . . . ; qk) fg] 2 H;
if p[setM @ q1; . . . ; qk !! fqg] 2 H then p[setM @ q1; . . . ; qk)) fg] 2
H.

Truth in F-Herbrand interpretations is analogous to the Herbrand case.
Given an F-logic program P , a Herbrand interpretation M is a Herbrand

model for P , if all rules of P are true in M . M is an F-Herbrand model if, in
addition, the closure properties hold. M is a minimal Herbrand model (resp.
minimal F-Herbrand model) if, for all other models (F-models) N , whenever
N �M then N = M . If all rules in a program P are Horn, a unique minimal
model exists. In the sequel we are interested in minimal F-models for general
programs.

2.2.2 Closure and inheritance rules

For every F-logic program P the closure properties listed above may be re-
stated as a �nite set of Horn rules, which we call closure rules; they are
denoted by the symbol P . Thus, if P has a minimal model, P [P has a
minimal model. Or in other terms: M is a minimal F-model of P if and
only if M is a minimal model of P [P . For example, the ISA properties are
stated by the rules

P : P

P
:
= Q P : Q ^ Q : P

P : Q P : R ^ R : Q: (2)

Giving another example, type inheritance for functional methods may be
stated as

P [M @X1; . . . ;Xk) fY g] P : Q ^ Q[M @X1; . . . ;Xk) fY g] (3)

7

For every arity of a functional method occurring in P , such a rule is needed.
The remaining closure properties are transformed to Horn rules in a similar
way.

In the current paper we only consider monotonic inheritance. Monotonic
inheritance may be stated as a set of Horn rules in a similar way as inheritance
of signatures, i.e., for every arity of a functional (resp. set-valued) method a
rule

P [M @X1; . . . ;Xk ! Y] P : Q ^ Q[M @X1; . . . ;Xk ! Y] (4)

is needed. Throughout the following sections P inh will denote the set of in-
heritance rules belonging to program P .

3 Evaluation of programs

3.1 Extending the T-operator

We denote TP the immediate consequence operator (which is de�ned as in
[ABW89]). Intuitively, TP (I) is the set of immediate conclusions from an
interpretation I, i.e., those which can be obtained by applying each rule
from P exactly once. For Horn programs P , TP " !(;) (the least �xpoint
of the operator TP starting with the empty interpretation), and the minimal
model of P , MP , coincide.

For a Horn F-logic program P the minimal F-model,MP , equals TP[P[P inh

" !(;). Since the set of closure (resp. inheritance) rules is essentially the same
for all F-logic programs (it only di�ers with respect to the arity of methods),
we treat program and closure (resp. inheritance) rules separately and de�ne
the F-completion operator T as an abstraction of TP[P inh ; given any interpre-
tation I for a program P , the operator T completes I to an F-interpretation
of P . The minimal F-model of a Horn program P is thus computed as
(T (TP)) " !(;).

Note, that, in the general case, an F-interpretation of a program P may
not satisfy the well-typing properties (see Section 2.2.1). The problem of
type-checking will be discussed in Section 4.

After each application of the TP -operator a functionality check should be
performed. We believe, that equalities, that are introduced on account of the

8

functionality or the ISA-antisymmetry property, are usually not intended by
the user (cf. [KLW92]). In fact, if during program evaluation (after applying
TP and before applying the succeeding T), an interpretation contains facts,
say

obj[functional method! a]; obj[functional method! b] (5)

but not
a
:
= b; (6)

the user has probably speci�ed an inconsistent program and may �nd it help-
ful, if the system responds with a warning instead of producing an unintended
equality.

To detect these inconsistencies during program evaluation we introduce
a slightly modi�ed completion operator: The derivation of equalities on ac-
count of the functionality and the ISA-antisymmetry property is blocked;

we call the modi�ed operator T
block

. The complementary operator, i.e., the
operator that completes an interpretation with respect to functionality and

ISA-antisymmetry, is called T
unblock

. In terms of the operators T
block

and

T
unblock

the minimal F-model of a program P may be computed by eval-

uating (T
unblock

(T
block

(TP))) " !(;). If at any iteration step the operator

T
unblock

adds new terms to the interpretation computed thus far the system
will notify these inconsistencies to the user.

3.2 Safety and weak recursive programs

Informally, a logic program is called safe, if it is guaranteed that no rule
creates an in�nite relation from �nite ones. Usually this is achieved by placing
some syntactic restrictions on the rules. For Datalog programs the concept
of limited variables is introduced (e.g., [Ull88]). A rule is de�ned to be safe,
if every variable occurring somewhere in this rule is limited. The notion of
safety can be adopted to F-logic programs in an obvious way. Henceforth we
only consider safe programs. However, even safe F-logic programs may have
to be rejected because their bottom-up evaluation may not terminate due to
an in�nite creation of id-terms. The latter takes place, if there is recursion
over rules containing object constructors (i.e. function symbols) in the head
term. This problem is known from Datalog-like languages with function
symbols (see e.g. [HY90]), yet, on account of the syntax of F-logic (variables

9

may occur at any position of an F-term) and because of the functionality of
methods new aspects arise. Functional methods, when invoked on an object,
have unique results. Thus in�nite object-id creation may not be propagated
over result positions of functional methods. This fact allows to weaken the
safety restrictions concerning the use of object constructors with respect to
other Datalog-like languages with function symbols, i.e., F-logic programs
may be accepted in cases where corresponding Datalog programs would be
rejected.

In analogy to Hull and Yoshikawa [HY90] F-logic programs are called
weakly recursive if there is no recursion through object constructors. The
following examples show F-logic rules and programs respectively, that are
not weakly recursive:

child(X)[address! A] X[address! A] (7)

X[related!! fchild(Y)g] X : person ^ X[related!! fY g] (8)

f(X) : some class Y : some other class ^ Y [method!! fXg]

Y [method!! fXg] X : some class ^ Y : some other class (9)

class[method!! ff(Z)g] object : class^ object[method!! fZg] (10)

Note, that the last rule, (10), shows object creation interleaving with mono-
tonic inheritance of methods: it is an example for implicit recursion through
object generation.

To detect recursion through object creation occurring within an F-logic
program P we introduce the safety graph S(P) as follows: The nodes of
the graph are the id-term positions1 in terms occurring in P [P [P inh; the
arcs of S(P) re
ect the propagation of newly created objects during program
evaluation. The closure rules and the inheritance rules, P [P inh, must be
integrated into S(P) since recursion may be implicit as in Rule (10).

In the following we outline an informal speci�cation of the procedure
which, given a program P , constructs S(P). During an initializing step, only
rules having a non-ground id-term t with at least one function symbol in the
head (i.e., rules where an object creation takes place) must be considered.

1An id-term position is any syntactical position within an F-term or a P-term, where
an id-term (or a variable) may occur.

10

Considering just these rules during the �rst step ensures that all cycles, that
may �nally occur, are indeed cycles over object creation. Let X1; . . . ;Xk be
the variables that occur in such t. To re
ect the
ow of the Xi into t, for
each t0j occurring somewhere in the body of that rule that contains at least
one of the Xi an arc is introduced from t0j to t. Consider Example (7): here
an arc is drawn from the X at the object position in the F-term of the body
to child(X) in the head.

For the remaining part of the procedure all rules of P [P [P inh must
be considered. Since we are interested in the propagation of object-ids (i.e.,
id-terms) that are built using function symbols we have to iteratively check
nodes with ingoing arcs. Two cases must be distinguished:

(S1) The node is an id-term t in the head h of some rule.
For all terms bi in the body of the same or any other rule that unify
with h, draw an arc from t to the id-term at the corresponding position
in bi.
In Example (7) the head uni�es with the body, thus an arc is drawn
from child(X) to X in X[address! A].

(S2) The node is an id-term t in a term b in the body of some rule.
Let X1; . . . ;Xk be the variables of t, which also occur in the head h of
the same rule. Let t01; . . . ; t

0

l be the id-terms containing at least one of
the Xi's. Draw arcs from t to each of the t0j, respectively.
In case the id-term t is part of an equality term, t

:
= t0, draw an

additional arc from t to t0.

The procedure stops, when no more arcs can be entered into the graph (be-
cause of (S1) or (S2)).

In Figure 1 the safety graph of Example (9) is shown. The ellipses group
together nodes which belong to the same term, they are labeled with the
F-term they correspond to. Nodes that are not connected to any other nodes
do not contribute to the creation of new objects.

If, for a program P , S(P) does not contain any cycle, the program is
free of recursion through object generation and thus weakly recursive. In the
rest of this section we will show, that the functionality property of F-logic
programs allows a weaker condition for weak recursion.

Consider the following example:

p(X;Y) X : person ^ X[best�friend! Y]

11

f(X) : some_class

Y[method −>> {X}]

Y : some_other_class

X : some_class

Y : some_other_class

Y[method −>> {X}]

Figure 1: Safety graph

X[best�friend! child(Y)] p(X;Y) ^ q(. . .) (11)

Here the method best friend is functional, and thus the result of applying
the method to any object of class person must be unique. The evaluation
of these rules may or may not result in an in�nite number of F-terms of the
form X[best�friend! child(child(:::(Y):::)], depending on the predicate q.
In our framework such a program will not be rejected. Since during program
evaluation the functionality of methods must be checked anyway (see Section
3.1), the admission of this rule, independent of predicate q, will not lead to
an in�nite computation. Therefore, we can expect that a larger class of
programs can be evaluated, because the syntactic safety check is replaced by
a semantic one.

12

Consider one more example:

X[related!! fchild(Y)g] X : person^X[related!! fY g]^Y : person
(12)

Rule (12) is similar to Rule (8) belonging to the examples for rules, which
are not weakly recursive. The former Rule (8) obviously is unsafe, since for
every variable assignment for Y , a new id-term child(Y) is created, which
may be assigned to Y during the next evaluation step, and so on. Rule (12)
di�ers from Rule (8): the variable Y also occurs in another positive term
in the body of the rule. Here after one application of the rule, the newly
created id-term child(. . .) may only then be assigned to Y during the next
step, if child(. . .) : person holds. Provided the extension of class person is
�nite, or in other terms, person is a �nite type, the evaluation of Rule (12)
terminates.

To capture this intuition and the restrictions on cause of functionality,
we extend the de�nition of the safety graph. Let S(P) be a safety graph
according to (S1) and (S2). We now derive the reduced safety graph S�(P)
by applying the following two steps on S(P):

(S3) Let X1; . . . ;Xk be the variables of an id-term t, where t occurs in the
body of some rule r. If each Xi is of a �nite type, then any arc starting
from t is removed.

(S4) Let t be an id-term which occurs in the result position of a functional
method of an F-term f . Let t! t0 be an arc in S(P) and let t! t0 !
t1 ! t2 ! . . .! tk ! t; k � 0; be any cycle, where the ti are id-terms
ocurring in F-terms fi; i = 1; . . . ; k. If for every fi which uni�es with
f ti occurs at the result position, then t! t0 is removed.

Condition (S4) may seem unnecessarily restrictive. Yet, it is not su�cient
to ignore cycles containing at least one node that corresponds to the result
position of a functional method. As the following example shows, we must
assure that the respective object (resp. the method or its arguments) does
not change in such a way, that whenever a new result is created it is assigned
a new object (resp. method or argument) in such a way, that there is a cyclic
shift of object-ids:

f(Y)[method! X] X[method! Y]: (13)

13

Starting with a fact a[method! b] the following facts will be computed suc-
cessively: f(b)[method! a], f(a)[method! f(b)], f(f(b))[method! f(a)],
f(f(a))[method! f(f(b))] and so on. Although the cycle corresponding to
Rule (13) contains a node which corresponds to the result position of a func-
tional method, it is not weakly recursive; this special case is captured by
extension (S4).

We now are in the position to rede�ne weak recursion; a program P is
called weak recursive, if its extended safety graph S�(P) does not contain a
cycle.

3.3 Perfect models of F-logic

Perfect model semantics for general logic programs [Prz89] can be extended
to F-logic programs. Consider the following examples:

X[wants!! fY g] :X[has!! fY g] (14)

and

peter[wants!! fY g] :john[wants!! fY g] (15)

Note, that both rules are recursive; in (14) we have recursion over the object-
position - in (15) over the method-position of the respective F-terms. More-
over, in both cases recursion involves a negated F-term. However, both cases
are compatible with strati�cation, because we either know, that the meth-
ods involved are di�erent, or that the respective objects are di�erent. Thus,
strati�cation for F-logic programs should be ensured with respect to com-
plete F-terms (resp. P-terms), not just with respect to objects or methods
as the analogy to Datalog might suggest. The following example shows that
techniques based on predicate names (respectively, their analogue) to derive
a (global) strati�cation cannot be applied directly, because there might be
F-terms, which have nonground id-terms in all positions:

married(sally; john)[shared methods!! faddressg]

X[M ! V] married(X;Y)[shared methods!! fMg] ^ Y [M ! V]

X[owns!! fcarg] X[works ! T] ^ :X[address! T] (16)

14

To check whether an F-logic program P is globally strati�ed and to com-
pute a global strati�cation (provided it exists), we introduce the dependency
graph D(P) as follows: The nodes of D(P) are the terms of P [P [P inh.2

For every rule r = A B1; . . .Bn contained in P [P [P inh, we have
arcs as follows:

(D1) From every term Bi occurring in the body of r, draw an arc to the
head term A. If Bi occurs negated then the respective arc must be
marked as negated.

(D2) For every term B in the body of a rule that uni�es with A, draw an
arc from A to B.

Note that in comparison to Datalog, we have to consider uni�cation arcs
(the second kind of arcs introduced above), since in F-logic variables may
occur at any position of a term. Note further, that on account of closure and
inheritance rules a lot of uni�cation arcs are introduced to the graph. This
may cause problems for the computation of the strati�cation of a program;
we will consider this topic at the end of the section.

An F-logic program P is globally strati�ed , ifD(P) has no cycle containing
marked arcs.

Based on the concept of global strati�cation we now de�ne an evaluation
strategy for general programs as follows (see also [ABW89]):

Decompose the dependency graph D(P) into strongly connected compo-
nents of maximum cardinality. Sort these components topologically; ambi-
guities may be solved in any way. Each component corresponds to a stratum
of P (the assignment is done on account of the membership of a rule's head
atom to a component), thus the ordering of the components induces an eval-
uation ordering on the rules of P . Evaluating the strata in this order yields
the perfect model of P .

Consider once more Example (16). Figure 2 shows the relevant part of the
corresponding dependency graph. The graph contains one negated arc that
does not lie within a cycle, thus the program is globally strati�ed. The only
cycle is enforced by the second rule; strata may thus be de�ned as follows:
S0 = fmarried(sally; john)[shared methods!! faddressg]g,

2For terms, that are textually equivalent modulo variable renamings, e.g., X[M ! V]
and Y [M !W], only one node may be introduced.

15

married(sally,john)[shared_methods −>> {address}]

married(X,Y)[shared_methods −>> {M}]

X[M −> V]

X[works −> T] X[address −> T]

X[owns −>> {car}]

Figure 2: Dependency graph

S1 = fX[M ! V] married(X;Y)[shared methods !! fMg] ^ Y [M !
V]g and
S2 = fX[owns !! fcarg] X[works ! T ^ :X[address! T]g.

The evaluation of the perfect model of a general program P is then per-
formed by computing the �xpoint (with respect to the combined operator
T (T)) of each stratum, beginning with stratum S0 and the empty set as in-
put and carrying on in such a way that the �xpoint of stratum Si is the input
for the computation of the �xpoint of stratum Si+1 (see [Ull88, ABW89]).

16

3.4 Reducing the dependency graph

As mentioned before, including the closure and inheritance rules into the
dependency graph leads to problems; the more arcs are introduced to the
graph on behalf of uni�cation (D2) the greater is the probability that cycles
(and also negative cycles) may occur. The following example will show that
uni�cation arcs, introduced on behalf of closure (resp. inheritance) rules,
very easily may cause unjusti�ed cycles. Consider the following rule for
monotonic inheritance:

P [M ! Y] P : Q ^ Q[M ! Y] (17)

Any rule having terms with 0-ary functional methods in its body will cause
an arc from the head of the inheritance rule to the respective term; any rule
with head being of the respective form will cause an arc from its head to the
respective term in the body of the closure rule. The impact on strati�cation
may be demonstrated by the following program P .

john : empl

john[lives! munich]

john[works ! mannheim]

X[working address! T] X : empl ^ X[works ! T] (18)

X[home address! T] X : empl ^ X[lives! T] ^ :X[works ! T]

Figure 3 shows the dependency graph of Program (18); for the sake of
simplicity we have omitted all closure and inheritance rules but Rule (17).
According to the dependency graph P is not strati�ed since there is a cy-
cle over a marked edge. P is rejected, although the intended meaning is
quite clear and may be described as follows: john is an employee; thus
he has `Mannheim' as working address and `Munich' as home address. A
closer inspection of the dependency graph of Figure 3 shows that propagat-
ing the uni�er computed at the uni�cation arc ending in the inheritance rule
along the cycle renders the uni�cation arc starting at the inheritance rule in-
valid (since home address does not unify with works). The cycle is thus not
strati�cation-relevant and may be ignored. This example outlines a strategy
that accepts a greater number of programs as being strati�ed than simply
checking the dependency graph for cycles over marked edges and dismissing
programs as suggested in the previous subsection: For each cycle containing

17

john[lives −> munich]
john[works −> mannheim]
john : empl

P : Q

Q[Y −> Z]
P[Y −> Z]

X[working_address −> T]

X[home_address −> T]

X[works −> T]

X : empl

X[lives −> T]

X[works −> T]

Figure 3: Dependency graph of Example 19

a marked edge (only these cycles are relevant for strati�cation) check whether
propagating uni�ers along the cycle invalidates uni�cation arcs. If one of the
negative cycles is strati�cation-relevant (for a formal de�nition see below)
reject the program; otherwise, if none of the cycles is strati�cation-relevant,
break the cycles (e.g., by ignoring the body-head arc belonging to the closure
(resp. inheritance) rule), compute the strati�cation and, depending on the
strati�cation, the perfect model as outlined in the previous subsection.

Consider one �nal example sketched in Figure 4, where a cycle involving
the inheritance rule

P [M ! X] P : Q ^ Q[M ! X] (19)

is indicated. Here propagation of uni�ers fails, since person does not unify
with empl . Nevertheless, because of inheritance of methods, the empl -term
depends on the person-term, i.e., the cycle is relevant for strati�cation.

To handle these cases correctly we de�ne isa-uni�cation of id-terms as
follows: An id-term t isa"-uni�es with an id-term t0 if either t uni�es with t0

18

X = Y

P[M −> X]

person[M1 −> R1] empl[M2 −> R2]

...

.

empl : person

P[M −> Y]

Figure 4: An example for isa-uni�cation

or if for some t? t : t? holds and t? uni�es with t0.3 Accordingly, t isa#-uni�es
with an id-term t0 if either t uni�es with t0 or if for some t? t? : t holds
and t? uni�es with t0. For two data F-terms t = P [M @A1; . . . ; Ak ! Q]
and t0 = P 0[M 0 @A0

1; . . . ; A
0

k ! Q0] t isa-uni�es with t0 if P isa"-uni�es
with P 0, M uni�es with M 0, the Ai unify with the A0

i and Q uni�es with
Q0. For two signature F-terms t = P [M @A1; . . . ; Ak) fQg] and t0 =
P 0[M 0 @A0

i; . . . ; A
0

k) fQ0g] t isa-uni�es with t0 if P isa"-uni�es with P 0, M
uni�es with M 0, the Ai's isa"-unify with the A0

i's and Q isa#-uni�es with
Q0 (note that isa-uni�cation of F-terms is asymmetric); this de�nition is
extended to terms over set-valued methods in the obvious way. Any cycle
in the dependency graph is strati�cation-relevant if for all closure (resp. in-
heritance) rules, whose corresponding arcs occur in the cycle, any F-term,
which is a direct successor, isa-uni�es with the respective direct predecessor
F-terms. For the sake of e�ciency we do not propagate uni�ers along the
whole cycle but consider just the neighbourhood of closure rules.

We can now weaken the de�nition of global strati�cation: An F-logic
program is globally strati�ed if it does not contain a strati�cation-relevant

3Here we assume, that before a strati�cation is computed the complete isa-relationships
are known. In Section4 we discuss corresponding evaluation frameworks.

19

cycle over a negative (marked) edge.

4 Type checking

Di�erent to the treatment of types as it is done usually in object-oriented
database systems, e.g., in [ACO90], F-logic allows reasoning about data and
meta-data (i.e., types) within an integrated framework. Thus type checking
may in general not be done at compile time, i.e., static type checking in the
strong sense may not be applied to F-logic programs.

In this section we will classify F-logic programs with respect to their type
checking properties. We therefore characterize the rules of a program P as
follows: a rule is a signature rule, if its head is a signature F-term, it is an
ISA rule, if its head is an ISA F-term and it is a data rule otherwise. We
further call a rule data dependent , if either any data F-term or P-term occurs
in the body of the rule, or (recursively) if any term in the body of the rule
uni�es with the head of a data dependent rule. Given a Program P , the set
of all signature (resp. ISA) rules belonging to P is called P sig (resp. P isa).

We distinguish three classes of programs:

- A program P is partially statically typed , if P sig[P isa is data independent .
Note that signature rules may depend on ISA-terms and vice versa.

- A program P is dynamically typed , if P isa is data independent and if in
addition P is signature strati�ed (as de�ned below).

- All other programs belong to the class of programs where type-checking
may only be applied after evaluating the program.

Consider the class of partially statically typed programs. A partially
statically typed program P may be split into P type, the union of P sig and
P isa, and P data. After computing the �xpoint for P type all type information
concerning P is known and static type checking may be invoked on P data.
We do not further elaborate on this topic, since in the current paper we are
mainly interested in dynamically typed programs.

Next consider programs belonging to the class of dynamically typed pro-
grams. Intuitively, a program P is dynamically typed, if, whenever a data

20

term is computed during program evaluation4, it may be immediately type-
checked; particularly, information once established about type correctness of
a data term should not be invalidated later. Since signature information is
stated explicitly through signature rules and implicitly through inheritance
(see Section 2.2), for dynamic type-checking it is necessary to know the com-
plete hierarchy before computing the �rst data term, thus ISA rules must
be data independent and they must be evaluated prior to all data rules. To
check whether all relevant type information is available whenever a data-term
is computed, we extend the dependency graph D(P) introduced in Section 3.3
to Dsig(P) by introducing signature arcs as follows:

(D3) For every pair consisting of a data- and a signature term both occurring
either as a fact or in the head of a rule, check whether the latter may be
relevant to the former. If this is the case insert a signature arc from the
node corresponding to the signature term to the node corresponding to
the data term.

A signature term having the form obj[method@��!args . . .] is relevant to a data

term having the form obj0[method0@
��!
args0 . . .], if there holds:

obj uni�es with an id-term t, obj0 uni�es with an id-term t, where
t0 : t, and method and method0 may denote the same method,
i.e.,method and method0 unify, the number of arguments is equal
and both methods are either functional or set-valued.

A program P is signature strati�ed , if the extended dependency graph
Dsig(P) has no cycles containing signature arcs. As stated before, signa-
ture strati�ed programs with data independent ISA-rules are dynamically
typed. The evaluation strategy for general F-logic programs introduced in
Section 3.3 may now be extended to integrate dynamic type checking by
computing the strata of a program P with respect to Dsig(P). Then, while
evaluating the rules in an order imposed by the ordering of the strata, each
data term may be immediately type-checked; type checking may be inte-
grated into the T -operator. Thus evaluating a program and type-checking of
its results may be done within the same framework.

4We assume that programs are evaluated bottom-up.

21

5 Conclusion

In this paper we discuss several aspects concerning the evaluation of F-
logic programs when techniques are applied which are known from deductive
databases. We discuss weak recursive programs and we are able to show,
that the knowledge about functionality of methods can be used to weaken
previous de�nitions. The strati�cation of general programs in F-logic is com-
plicated by the fact that variables may occur anywhere in an F-term. Strat-
i�cation for Datalog programs is de�ned with respect to predicate symbols.
In general, F-terms do not embody something (syntactically) equivalent to
predicate symbols; we thus de�ne strati�cation with respect to the complete
terms in the rules. To this end we have to base the de�nition of a dependency
graph on uni�cation arcs (which are not needed in Datalog).

Each program is extended by a set of closure and inheritance rules. Yet,
building a dependency graph over an extended program may increase the
number of negative cycles (because of the great number of uni�cation arcs
that are introduced on account of the closure rules). We distinguish between
relevant and irrelevant cycles on behalf of the propagation of uni�ers over
closure rules. A strati�cation is then computed with respect to relevant
cycles.

Finally, we discuss dynamic typing and type checking. We introduce var-
ious concepts of type correctness. Since we are interested in dynamic typing
we de�ne certain criteria which must be ful�lled such that dynamic type
checking can be applied. We �nally show how to integrate dynamic type
checking into a bottom-up evaluation strategy.

Acknowledgements: We would like to thank J�urgen Frohn, Michael
Kramer and Heinz Upho� for helpful comments and discussions on the top-
ics of this paper.

References

[ABW89] Krzysztof R. Apt, Howard Blair, and Adrian Walker. Towards a
theory of declarative knowledge. In Jack Minker, editor, Founda-

22

tions of Deductive Databases and Logic Programming, pages 1 {
77. Morgan Kaufmann, 1989.

[ACO90] A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly typed,
interactive conceptual language. In Stanley B. Zdonik and David
Maier, editors, Readings in Object-Oriented Database Systems,
chapter 2, pages 147 { 162. Morgan Kaufmann, 1990.

[AG87] Serge Abiteboul and Stephane Grumbach. COL: A logic-based
language for complex objects. In 1st Workshop on Database Pro-
gramming Languages, pages 253 { 276, 1987.

[AK89] Serge Abiteboul and Paris Kanellakis. Object identity as a query
language primitive. In Proceedings of the ACM SIGMOD Confer-
ence on Management of Data, pages 159 { 173, 1989.

[BNST87] Catriel Beeri, S. Naqvi, O. Shmueli, and S. Tsur. Sets and nega-
tion in a logic database language (LDL). Technical report, MCC,
1987.

[CL73] C.L. Chang and R.C.T. Lee. Symbolic Logic and Mechanical The-
orem Proving. Academic Press, 1973.

[CW89] Weidong Chen and David S. Warren. C-logic of complex objects.
In Proceedings of the ACM SIGMOD Conference on Management
of Data, pages 369 { 378, 1989.

[HY90] Richard Hull and Masatoshi Yoshikawa. Ilog: Declarative creation
and manipulation of object identi�ers. In Proceedings of the Intl.
Conference on Very Large Data Bases, pages 455 { 468, 1990.

[KL89] Michael Kifer and Georg Lausen. F-logic: A higher-order lan-
guage for reasoning about objects, inheritance, and scheme. In
Proceedings of the ACM SIGMOD Conference on Management of
Data, pages 134 { 146, 1989.

[KLW92] Michael Kifer, Georg Lausen, and James Wu. Logical founda-
tions of object oriented and frame-based languages. accepted for
publication, 1992.

23

[KW89] Michael Kifer and James Wu. A logic for object-oriented pro-
gramming (Maier's O-logic revisited). In Proceedings of the
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 379 { 393, 1989.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer, 2nd
edition, 1987.

[LU] Georg Lausen and Heinz Upho�. Aspects of inheritance in a rule
language. Manuscript.

[Mai86] David Maier. A logic for objects. In Proceedings of the Workshop
on Foundations of Deductive Databases and Logic Programming,
pages 6 { 26, 1986.

[Prz89] Teodor C. Przymusinski. On the declarative semantics of deduc-
tive databases and logic programs. In Jack Minker, editor, Foun-
dations of Deductive Databases and Logic Programming, pages 191
{ 216. Morgan Kaufmann, 1989.

[Ull88] J.D. Ullman. Principles of Database and Knowledgebase Systems.
Computer Science Press, 1988.

24

